Happy “Back To The Future Day”!

Happy “Back To The Future Day”!

Happy “Back to the Future Day”!

Find out more about @nasa​‘s real journey to Mars:

https://www.nasa.gov/journeytomars

More Posts from Nasa and Others

3 years ago

Celebrating Five Years at Jupiter!

We just released new eye-catching posters and backgrounds to celebrate the five-year anniversary of Juno’s orbit insertion at Jupiter in psychedelic style.

Celebrating Five Years At Jupiter!

On July 4, 2016, our Juno spacecraft arrived at Jupiter on a mission to peer through the gas giant planet’s dense clouds and answer questions about the origins of our solar system. Since its arrival, Juno has provided scientists a treasure trove of data about the planet’s origins, interior structures, atmosphere, and magnetosphere.

Celebrating Five Years At Jupiter!

Juno is the first mission to observe Jupiter’s deep atmosphere and interior, and will continue to delight with dazzling views of the planet’s colorful clouds and Galilean moons. As it circles Jupiter, Juno provides critical knowledge for understanding the formation of our own solar system, the Jovian system, and the role giant planets play in putting together planetary systems elsewhere.

Get the posters and backgrounds here!

For more on our Juno mission at Jupiter, follow NASA Solar System on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Ready for a virtual adventure through the Orion Nebula?

Suspended in space, the stars that reside in the Orion Nebula are scattered throughout a dramatic dust-and-gas landscape of plateaus, mountains, and valleys that are reminiscent of the Grand Canyon. This visualization uses visible and infrared views, combining images from the Hubble Space Telescope and the Spitzer Space Telescope to create a three-dimensional visualization.

Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.

You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!

Visualization credits: NASA, ESA, and F. Summers, G. Bacon, Z. Levay, J. DePasquale, L. Hustak, L. Frattare, M. Robberto, M. Gennaro (STScI), R. Hurt (Caltech/IPAC), M. Kornmesser (ESA); Acknowledgement: A. Fujii, R. Gendler


Tags
9 years ago

Record-Shattering Global Warm Temperatures in 2015

Earth’s 2015 surface temperatures were the warmest since modern record keeping began in 1880, according to independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).

image

Globally-averaged temperatures in 2015 shattered the previous mark set in 2014 by 0.23 degrees Fahrenheit (0.13 Celsius). Only once before, in 1998, has the new record been greater than the old record by this much.

The 2015 temperatures continue a long-term warming trend, according to analyses by scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. NOAA scientists concur with the finding that 2015 was the warmest year on record based on separate, independent analyses of the data.

image

Since the late-19th century, the planet’s average surface temperature has risen about 1.8 degrees Fahrenheit. This change is largely driven by increased carbon dioxide and other human-made emissions into the atmosphere.

An important thing to remember when reading this information is that it reflects global temperature average. That means that specific regions or areas could have experienced colder weather than usual, but overall the global temperature has risen.

Record-Shattering Global Warm Temperatures In 2015

How do we know? Our analyses incorporate surface temperature measurements from 6,300 weather stations, ship-and buoy-based observations of sea surface temperatures, and temperature measurements from Antarctic research stations.

What about El Niño? Phenomena such as El Niño or La Niña, which warm or cool the tropical Pacific Ocean, can contribute to short-term variations in global average temperature. Last year’s temperatures had an assist from a warming El Niño, but it is the cumulative effect of the long-term trend that has resulted in the record warming that we’re seeing.

The full 2015 surface temperature data set and the complete methodology used to make the temperature calculation are available HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

Stars Make Firework Supplies!

The next time you see fireworks, take a moment to celebrate the cosmic pyrotechnics that made them possible. From the oxygen and potassium that help fireworks burn to the aluminum that makes sparklers sparkle, most of the elements in the universe wouldn’t be here without stars.

From the time the universe was only a few minutes old until it was about 400 million years old, the cosmos was made of just hydrogen, helium and a teensy bit of lithium. It took some stellar activity to produce the rest of the elements!

Stars Make Firework Supplies!

Stars are element factories

Even after more than 13 billion years, the hydrogen and helium that formed soon after the big bang still make up over 90 percent of the atoms in the cosmos. Most of the other elements come from stars.

Stars Make Firework Supplies!

Stars began popping into the universe about 400 million years after the big bang. That sounds like a long time, but it’s only about 3% of the universe’s current age!

Our Nancy Grace Roman Space Telescope will study the universe’s early days to help us learn more about how we went from a hot, soupy sea of atoms to the bigger cosmic structures we see today. We know hydrogen and helium atoms gravitated together to form stars, where atoms could fuse together to make new elements, but we're not sure when it began happening. Roman will help us find out.

Stars Make Firework Supplies!

The central parts of atoms, called nuclei, are super antisocial – it takes a lot of heat and pressure to force them close together. Strong gravity in the fiery cores of the first stars provided just the right conditions for hydrogen and helium atoms to combine to form more elements and generate energy. The same process continues today in stars like our Sun and provides some special firework supplies.

Carbon makes fireworks explode, helps launch them into the sky, and is even an ingredient in the “black snakes” that seem to grow out of tiny pellets. Fireworks glow pink with help from the element lithium. Both of these elements are created by average, Sun-like stars as they cycle from normal stars to red giants to white dwarfs.

Eventually stars release their elements into the cosmos, where they can be recycled into later generations of stars and planets. Sometimes they encounter cosmic rays, which are nuclei that have been boosted to high speed by the most energetic events in the universe. When cosmic rays collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron, which can make fireworks green, and beryllium, which can make them silver or white!

Stars Make Firework Supplies!

Since massive stars have even stronger gravity in their cores, they can fuse more elements – all the way up to iron. (The process stops there because instead of producing energy, fusing iron is so hard to do that it uses up energy.)

That means the sodium that makes fireworks yellow, the aluminum that produces silver sparks (like in sparklers), and even the oxygen that helps fireworks ignite were all first made in stars, too! A lot of these more complex elements that we take for granted are actually pretty rare throughout the cosmos, adding up to less than 10 percent of the atoms in the universe combined!

Fusion in stars only got us through iron on the periodic table, so where do the rest of our elements come from? It’s what happens next in massive stars that produces some of the even more exotic elements.

Stars Make Firework Supplies!

Dying stars make elements too!

Once a star many times the Sun’s mass burns through its fuel, gravity is no longer held in check, and its core collapses under its own weight. There, atoms are crushed extremely close together – and they don’t like that! Eventually it reaches a breaking point and the star explodes as a brilliant supernova. Talk about fireworks! These exploding stars make elements like copper, which makes fireworks blue, and zinc, which creates a smoky effect.

Something similar can happen when a white dwarf star – the small, dense core left behind after a Sun-like star runs out of fuel – steals material from a neighboring star. These white dwarfs can explode as supernovae too, spewing elements like the calcium that makes fireworks orange into the cosmos.

Stars Make Firework Supplies!

When stars collide

White dwarfs aren’t the only “dead” stars that can shower their surroundings with new elements. Stars that are too massive to leave behind white dwarfs but not massive enough to create black holes end up as neutron stars.

If two of these extremely dense stellar skeletons collide, they can produce all kinds of elements, including the barium that makes fireworks bright green and the antimony that creates a glitter effect. Reading this on a phone or computer? You can thank crashing dead stars for some of the metals that make up your device, too!

Stars Make Firework Supplies!

As for most of the remaining elements we know of, we've only seen them in labs on Earth so far.

Sounds like we’ve got it all figured out, right? But there are still lots of open questions. Our Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies. That’s important because the right materials had to come together to form the air we breathe, our bodies, the planet we live on, and yes – even fireworks!

So when you’re watching fireworks, think about their cosmic origins!

Learn more about the Roman Space Telescope at: https://roman.gsfc.nasa.gov/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

4 years ago
Curious About How NASA Will Land The Next Mission To The Red Planet – The Perseverance Mars Rover?

Curious about how NASA will land the next mission to the Red Planet – the Perseverance Mars rover? Here’s your chance to ask our expert! 

After nearly 300 million miles, our Perseverance rover completes its journey to Mars on Feb. 18. To reach the surface of the Red Planet, it has to survive the harrowing final phase known as Entry, Descent, and Landing. Mission engineer Chloe Sackier will be taking your questions in an Answer Time session on Thursday, Feb. 4 from noon to 1pm ET here on our Tumblr! Make sure to ask your question now by visiting http://nasa.tumblr.com/ask. 

Chloe Sackier is a systems engineer at NASA’s Jet Propulsion Laboratory (JPL) in Southern California. She works on the Mars 2020 Entry, Descent and Landing team, tasked with safely delivering the Perseverance rover to the surface of Mars.

image

Landing Perseverance on Mars – fun facts: 

The landing system on the mission includes a parachute, descent vehicle, and an approach called a "skycrane maneuver" for lowering the rover on a tether to the surface during the final seconds before landing.

Perseverance will use new technologies for landing, including Terrain-Relative Navigation. This sophisticated navigation system allows the rover to detect and avoid hazardous terrain by diverting around it during its descent through the Martian atmosphere. 

A microphone allows engineers to analyze entry, descent, and landing. It might also capture sounds of the rover at work, which would provide engineers with clues about the rover's health and operations.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

NASA Tech Launching on the Falcon Heavy

Later this month, a SpaceX Falcon Heavy rocket will take to the skies for the third time to launch the Department of Defense’s Space Test Program-2 (STP-2) mission. Several exciting, one-of-a-kind NASA technology and science payloads are among the two-dozen spacecraft aboard.

image

First, let’s talk about that Falcon Heavy rocket. Its 27 engines generate thrust at liftoff equal to that of approximately 18 airplanes, and it can lift over 140,000 pounds.

image

Managed by the U.S. Air Force Space and Missile Systems Center, STP-2 is the first government-contracted Falcon Heavy launch. It will reuse the two side boosters recovered after the April flight. SpaceX describes it as one of the most challenging launches in the company’s history.

It’s a big deal to us at NASA because we’re launching some pretty cool technologies. The tech will support our future exploration plans by helping improve future spacecraft design and performance. Here’s a bit about each:

Deep Space Atomic Clock

Time is the heartbeat of space navigation. Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.

Our Jet Propulsion Laboratory has been perfecting an atomic clock fit for exploration missions. The Deep Space Atomic Clock is the first atomic clock designed to fly on a spacecraft destined for beyond Earth's orbit. The timepiece is lighter and smaller—no larger than a toaster oven—than its refrigerator-sized, Earthly counterparts.

image

This miniaturized clock could enable one-way navigation: a spacecraft receives a signal from Earth and can determine its location immediately using its own, built-in navigation system. Even smaller versions of the clock are being investigated right now that could be used for the growing number of small to mid-size satellites. As we go forward to the Moon with the Artemis program, precise measurements of time are key to mission success.

image

The Deep Space Atomic Clock is the primary payload onboard the General Atomics Electromagnetic Systems Orbital Test Bed satellite and will perform a year-long demonstration in space.

Enhanced Tandem Beacon Experiment (E-TBEx)

Two tiny satellites will study how signals can be muddled as they travel through hard-to-predict bubbles in the upper atmosphere. Signals sent from satellites down to Earth (and vice versa) can be disrupted by structured bubbles that sometimes form in Earth's upper atmosphere. Because this region is affected both by weather on Earth and conditions in space, it's hard to predict just when these bubbles will form or how they'll mess with signals.

image

The E-TBEx CubeSats (short for Enhanced Tandem Beacon Experiment) will try to shed some light on that question. As these little satellites fly around Earth, they'll send radio signals (like the ones used by GPS) to receiving stations on the ground. Scientists will be able to look at the signals received and see if they were jumbled as they traveled through the upper atmosphere down to Earth — which will help us track when these bubbles are forming and how much they're interfering with our signals.

Green Propellant Infusion Mission (GPIM)

For decades, we have relied on a highly toxic spacecraft fuel called hydrazine. The Green Propellant Infusion Mission (GPIM) will lay the foundation to replace conventional chemical propulsion systems with a safer and more efficient alternative for next-generation spacecraft.

GPIM will demonstrate a new propellant in space for the first time. Concocted by the U.S. Air Force Research Laboratory, this innovative, “green” fuel—which actually has more of a peach hue—is expected to improve overall spacecraft performance due to its higher density, increased thrust and lower freezing point in comparison with hydrazine.

image

GPIM’s propulsion system, developed by Aerojet Rocketdyne, consists of new compatible tanks, valves and thrusters. During the two-month-long demonstration on a Ball Aerospace spacecraft, engineers will conduct orbital maneuvers to demonstrate the performance of the propellant and propulsion system.

image

Space Environment Testbeds (SET)

It’s not easy being a spacecraft; invisible, energetic particles zip throughout space — and while there are so few that space is considered a vacuum, what’s there still packs a punch. Tiny particles — like those seen here impacting a detector on a Sun-studying spacecraft — can wreak havoc with the electronics we send up into space.

image

Space Environment Testbeds — or SET, for short — is a mission to study space radiation and how it affects spacecraft and electronics in orbit. What looks like snow flurries in these animated images, for example, is actually a solar radiation storm of incredibly fast particles, unleashed by a solar eruption. Energetic particles from the Sun or deep space can spark memory damage or computer upsets on spacecraft, and over time, degrade hardware.

By studying radiation effects and different methods to protect satellites, SET will help future missions improve spacecraft design, engineering and operations.

Follow @NASA_Technology and @NASASun on Twitter for news about the STP-2 launch and our missions aboard.

Check out www.nasa.gov/spacex to stay up-to-date on the launch day and time. Don’t forget to tune into our launch coverage, scheduled to start about 30 minutes before liftoff!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

AI, Cancer Therapy and Chemical Gardens Headed to Space Station

A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. The spacecraft will deliver science that studies the use of artificial intelligence, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. 

Take a look at five investigations headed to space on the latest SpaceX resupply:

image

Credits: DLR

As we travel farther into space, the need for artificial intelligence (AI) within a spacecraft increases.

image

Credits: DLR

Mobile Companion, a European Space Agency (ESA) investigation, explores the use of AI as a way to mitigate crew stress and workload during long-term spaceflight.

image

Credits: DLR

Plants regulate their temperature by releasing water through tiny pores on their leaves. If they have sufficient water they can maintain their temperature, but if water is insufficient their temperatures rise. This temperature rise can be measured with a sensor in space.

image

Credits: NASA/JPL-Caltech

ECOSTRESS measures the temperature of plants and uses that information to better understand how much water plants need and how they respond to stress.

image

Credits: Northwestern University

Spaceflight has an on impact many bodily systems. Rodent Research-7 takes a look at how the microgravity environment of space affects the community of microoganisms in the gastrointestinal tract, or microbiota.

The study also evaluates relationships between system changes, such as sleep-wake cycle disruption, and imbalance of microbial populations, to identify contributing factors and supporting development of countermeasures to protect astronaut health during long-term missions, as well as to improve the treatment of gastrointestinal, immune, metabolic and sleep disorders on Earth.

image

Credits: Angiex

Cardiovascular diseases and cancer are the leading causes of death in developed countries. Angiex Cancer Therapy examines whether microgravity-cultured endothelial cells represent a valid in vitro model to test effects of vascular-targeted agents on normal blood vessels.

Results may create a model system for designing safer drugs, targeting the vasculature of cancer tumors and helping pharmaceutical companies design safer vascular-targeted drugs.

image

Credits: Oliver Steinbock chemistry group at Florida State University

Chemical Gardens are structures that grow during the interaction of metal salt solutions with silicates, carbonates or other selected anions. Their growth characteristics and attractive final shapes form from a complex interplay between reaction-diffusion processes and self-organization.

image

Credits: Oliver Steinbock chemistry group at Florida State University

On Earth, gravity-induced flow due to buoyancy differences between the reactants complicates our understanding of the physics behind these chemical gardens. Conducting this experiment in a microgravity environment ensures diffusion-controlled growth and allows researchers a better assessment of initiation and evolution of these structures.

These investigations join hundreds of others currently happening aboard the orbiting laboratory. 

For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. For opportunities to see the space station pass over your town, check out Spot the Station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Do pets like cats and dogs need to have their eyes protected in anyway? Should they be kept away from windows?

They should be fine. Animals typically don’t look at the Sun so they probably won't during the eclipse either.


Tags
8 years ago

For more information, visit: https://www.missionjuno.swri.edu/junocam/processing?id=182

Purple Haze, All Around. See Jupiter In A Whole New Light In This Citizen Scientist-created JunoCam Image.

Purple haze, all around. See Jupiter in a whole new light in this citizen scientist-created JunoCam image.

8 years ago

Watch a Launch From Your Own Backyard

On Monday, Oct. 17, we’re launching cargo to the International Space Station, and if you live on the east coast, there’s a chance you can catch a glimpse! 

image

The above map shows the areas on the east coast where launch may be visible, depending on cloud conditions.

Liftoff is currently scheduled for 7:40 p.m. EDT from our Wallops Flight Facility in Virginia. 

The launch of Orbital ATK’s Cygnus spacecraft will carry around 5,100 pounds of supplies and research materials to the crew on the space station. 

Not in the launch viewing area? No worries! Full launch coverage will be available starting at 6:45 p.m. EDT HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
  • heraldchaos
    heraldchaos liked this · 4 years ago
  • rhodeytonies
    rhodeytonies liked this · 4 years ago
  • perseidas-cayendo
    perseidas-cayendo liked this · 4 years ago
  • candidalane
    candidalane liked this · 5 years ago
  • i-love-books-because-reasons
    i-love-books-because-reasons liked this · 6 years ago
  • lillianfrye
    lillianfrye liked this · 6 years ago
  • footballfan44
    footballfan44 liked this · 6 years ago
  • philo-fervor
    philo-fervor liked this · 7 years ago
  • thisiskaylin
    thisiskaylin liked this · 7 years ago
  • haruatori
    haruatori reblogged this · 7 years ago
  • cleverexpansion-blog
    cleverexpansion-blog liked this · 7 years ago
  • dispirtive-blog
    dispirtive-blog liked this · 7 years ago
  • bertmccrackout
    bertmccrackout liked this · 8 years ago
  • im-gonna-be-late
    im-gonna-be-late liked this · 8 years ago
  • whoviankendokaqueenbeewithbooks
    whoviankendokaqueenbeewithbooks liked this · 8 years ago
  • cable-mackerel
    cable-mackerel liked this · 8 years ago
  • jpl-official-blog
    jpl-official-blog reblogged this · 8 years ago
  • hslyons-blog
    hslyons-blog liked this · 8 years ago
  • alex-with-an-x
    alex-with-an-x reblogged this · 8 years ago
  • booty-in-thongs
    booty-in-thongs liked this · 8 years ago
  • palecuties
    palecuties liked this · 8 years ago
  • greggzwillingmd
    greggzwillingmd liked this · 8 years ago
  • gawainsplace
    gawainsplace liked this · 8 years ago
  • riverecho
    riverecho reblogged this · 8 years ago
  • reallytiredme
    reallytiredme reblogged this · 9 years ago
  • yummyloveshoney-blog
    yummyloveshoney-blog reblogged this · 9 years ago
  • nelbardude
    nelbardude liked this · 9 years ago
  • verruckt23
    verruckt23 liked this · 9 years ago
  • arnelordgan
    arnelordgan liked this · 9 years ago
  • flowersandeverythingelse
    flowersandeverythingelse reblogged this · 9 years ago
  • maximopeche
    maximopeche liked this · 9 years ago
  • note-head-blog
    note-head-blog liked this · 9 years ago
  • kendradawnnn
    kendradawnnn reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags