From The Vantage Point Of The International Space Station, Astronaut Shane Kimbrough (@astro_kimbrough)

From The Vantage Point Of The International Space Station, Astronaut Shane Kimbrough (@astro_kimbrough)

From the vantage point of the International Space Station, astronaut Shane Kimbrough (@astro_kimbrough) captured this image over the Earth, writing “Looking west over the Red Sea, Saudi Arabia and Egypt.  #EarthArt from the amazing space station.”

The space station serves as the world's laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including asteroids and Mars.

More Posts from Nasa and Others

8 years ago

Solar System: Things to Know This Week

Learn more about our Deep Space Network, where to watch the Ursid meteor shower, Cassini’s ring-grazing at Saturn and more.

image

1. A Deep Space Anniversary

On Dec. 24, 1963, the Jet Propulsion Laboratory's Deep Space Information Facility was renamed the Deep Space Network. And, it’s been humanity's ear to the skies ever since.

+ History of the Deep Space Network 

image

2. Ursid Meteor Shower 

The best time to view the Ursids, radiating from Ursa Minor, or the little Dipper, will be from midnight on December 21 until about 1a.m. on December 22, before the moon rises.

image

3. At Saturn, the Ring-Grazing Continues

Our Cassini spacecraft has completed several orbits that take it just outside Saturn’s famous rings. The first ring-grazing orbit began on November 30. The spacecraft will repeat this feat 20 times, with only about a week between each ring-plane crossing.

+ Learn more

Solar System: Things To Know This Week

4. Preparing for the 2017 Total Solar Eclipse

Next year North America will see one of the most rare and spectacular of all sky events. Learn how to prepare.

+ 2017 Solar Eclipse Toolkit

image

5. Searching for Rare Asteroids

Our first mission to return an asteroid sample to Earth will be multitasking during its two-year outbound cruise to the asteroid Bennu. On February 9-20, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) will activate its onboard camera suite and begin its search for elusive “Trojan,” asteroids, constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet. Because they constantly lead or follow in the same orbit, they will never collide with their companion planet.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Things: CubeSats — Going Farther

Now that the MarCOs — a pair of briefcase-sized interplanetary CubeSats — seem to have reached their limit far beyond Mars, we’re looking forward to an expanding era of small, versatile and powerful space-based science machines.

Here are ten ways we’re pushing the limits of miniaturized technology to see  just how far it can take us.

image

1. MarCO: The Farthest (So Far)

MarCO, short for Mars Cube One, was the first interplanetary mission to use a class of mini-spacecraft called CubeSats.

The MarCOs — nicknamed EVE and WALL-E, after characters from a Pixar film — served as communications relays during InSight's November 2018 Mars landing, beaming back data at each stage of its descent to the Martian surface in near-real time, along with InSight's first image.

WALL-E sent back stunning images of Mars as well, while EVE performed some simple radio science.

All of this was achieved with experimental technology that cost a fraction of what most space missions do: $18.5 million provided by NASA's Jet Propulsion Laboratory in Pasadena, California, which built the CubeSats.

WALL-E was last heard from on Dec. 29; EVE, on Jan. 4. Based on trajectory calculations, WALL-E is currently more than 1 million miles (1.6 million kilometers) past Mars; EVE is farther, almost 2 million miles (3.2 million kilometers) past Mars.

image

MarCO-B took these images as it approached Mars in November 2018. Credit: NASA/JPL-Caltech

2. What Are CubeSats?

CubeSats were pioneered by California Polytechnic State University in 1999 and quickly became popular tools for students seeking to learn all aspects of spacecraft design and development.

Today, they are opening up space research to public and private entities like never before. With off-the-shelf parts and a compact size that allows them to hitch a ride with other missions — they can, for example, be ejected from the International Space Station, up to six at a time — CubeSats have slashed the cost of satellite development, opening up doors to test new instruments as well as to create constellations of satellites working together.

CubeSats can be flown in swarms, capturing simultaneous, multipoint measurements with identical instruments across a large area. Sampling entire physical systems in this way would drive forward our ability to understand the space environment around us, in the same way multiple weather sensors help us understand global weather systems.

Ready to get started? Check out NASA’s CubeSats 101 Guide.

image

Engineer Joel Steinkraus uses sunlight to test the solar arrays on one of the Mars Cube One (MarCO) spacecraft at NASA's Jet Propulsion Laboratory. Credit: NASA/JPL-Caltech

3. Measuring Up

The size and cost of spacecraft vary depending on the application; some are the size of a pint of ice cream while others, like the Hubble Space Telescope, are as big as a school bus.

Small spacecraft (SmallSats) generally have a mass less than 400 pounds (180 kilograms) and are about the size of a large kitchen fridge.

CubeSats are a class of nanosatellites that use a standard size and form factor.  The standard CubeSat size uses a "one unit" or "1U" measuring 10x10x10 centimeters (or about 4x4x4 inches) and is extendable to larger sizes: 1.5, 2, 3, 6, and even 12U.

image

The Sojourner rover (seen here on Mars in 1997) is an example of small technology that pioneered bigger things. Generations of larger rovers are being built on its success.

4. A Legacy of Small Pathfinders

Not unlike a CubeSat, NASA’s first spacecraft — Explorer 1 — was a small, rudimentary machine. It launched in 1958 and made the first discovery in outer space, the Van Allen radiation belts that surround Earth. It was the birth of the U.S. space program.

In 1997, a mini-rover named Sojourner rolled onto Mars, a trial run for more advanced rovers such as NASA's Spirit, Opportunity and Curiosity.

Innovation often begins with pathfinder technology, said Jakob Van Zyl, director of the Solar System Exploration Directorate at NASA's Jet Propulsion Laboratory. Once engineers prove something can be done, science missions follow.

image

5. Testing in Space

NASA is continually developing new technologies — technologies that are smaller than ever before, components that could improve our measurements, on-board data processing systems that streamline data retrievals, or new methods for gathering observations. Each new technology is thoroughly tested in a lab, sometimes on aircraft, or even at remote sites across the world. But the space environment is different than Earth. To know how something is going to operate in space, testing in space is the best option.

Sending something unproven to orbit has traditionally been a risky endeavor, but CubeSats have helped to change that. The diminutive satellites typically take less than two years to build. CubeSats are often a secondary payload on many rocket launches, greatly reducing cost. These hitchhikers can be deployed from a rocket or sent to the International Space Station and deployed from orbit.

Because of their quick development time and easy access to space, CubeSats have become the perfect platform for demonstrating how a new technological advancement will perform in orbit.

image

RainCube is a mini weather satellite, no bigger than a shoebox, that will measure storms. It’s part of several new NASA experiments to track storms from space with many small satellites, instead of individual, large ones. Credit: UCAR

6. At Work in Earth Orbit

A few recent examples from our home world:

RainCube, a satellite no bigger than a suitcase, is a prototype for a possible fleet of similar CubeSats  that could one day help monitor severe storms, lead to improving the accuracy of weather forecasts and track climate change over time.

IceCube tested instruments for their ability to make space-based measurements of the small, frozen crystals that make up ice clouds. Like other clouds, ice clouds affect Earth’s energy budget by either reflecting or absorbing the Sun’s energy and by affecting the emission of heat from Earth into space. Thus, ice clouds are key variables in weather and climate models.

image

Rocket Lab's Electron rocket lifts off from Launch Complex 1 for the NASA ELaNa19 mission. Credit: Trevor Mahlmann/Rocket Lab

7. First Dedicated CubeSat Launch

A series of new CubeSats is now in space, conducting a variety of scientific investigations and technology demonstrations following a Dec. 17, 2018 launch from New Zealand — the first time CubeSats have launched for NASA on a rocket designed specifically for small payloads.

This mission included 10 Educational Launch of Nanosatellites (ELaNa)-19 payloads, selected by NASA’s CubeSat Launch Initiative:

CubeSat Compact Radiation Belt Explorer (CeREs) — High energy particle measurement in Earth’s radiation belt

Simulation-to-Flight 1 (STF-1) — Software condensing to support CubeSat implementations

Advanced Electrical Bus (ALBus) — Advances in solar arrays and high capacity batteries

CubeSat Handling Of Multisystem Precision Time Transfer (CHOMPTT) — Navigation plans for exo-planetary implementation

CubeSail — Deployment and control of a solar sail blade

NMTSat — Magnetic field, high altitude plasma density

Rsat — Manipulation of robotic arms

Ionospheric Scintillation Explorer (ISX) — Plasma fluctuations in the upper atmosphere

Shields-1 — Radiation shielding

DaVinci — High School to Grade School STEM education

8. The Little CubeSat That Could

CubeSat technology is still in its infancy, with mission success rates hovering near 50 percent. So, a team of scientists and engineers set out on a quest. Their goal? To build a more resilient CubeSat — one that could handle the inevitable mishaps that bedevil any spacecraft, without going kaput.

They wanted a little CubeSat that could.

They got to work in 2014 and, after three years of development, Dellingr was ready to take flight.

Read the Full Story: Dellingr: The Little CubeSat That Could

image

Artist's concept of Lunar Flashlight. Credit: NASA

9. Going Farther

There are a handful of proposed NASA missions could take CubeSat technology farther:

CUVE would travel to Venus to investigate a longstanding mystery about the planet’s atmosphere using ultraviolet-sensitive instruments and a novel, carbon-nanotube light-gathering mirror.

Lunar Flashlight would use a laser to search for water ice in permanently shadowed craters on the south pole of Earth’s Moon.

Near-Earth Asteroid Scout, a SmallSat, would use a solar sail to propel it to do science on asteroids that pass close to Earth.

All three spacecraft would hitch rides to space with other missions, a key advantage of these compact science machines.

image

Expedition 56 Flight Engineer Serena Auñón-Chancellor installs the NanoRacks Cubesat Deployer-14 (NRCSD-14) on the Multipurpose Experiment Platform inside the Japanese Kibo laboratory module. The NRCSD-14 was then placed in the Kibo airlock and moved outside of the space station to deploy a variety of CubeSats into Earth orbit. Credit: NASA

10. And We’re Just Getting Started

Even if they're never revived, the team considers MarCO a spectacular success.

A number of the critical spare parts for each MarCO will be used in other CubeSat missions. That includes their experimental radios, antennas and propulsion systems. Several of these systems were provided by commercial vendors, making it easier for other CubeSats to use them as well.

More small spacecraft are on the way. NASA is set to launch a variety of new CubeSats in coming years.

"There's big potential in these small packages," said John Baker, the MarCO program manager at JPL. "CubeSats — part of a larger group of spacecraft called SmallSats — are a new platform for space exploration affordable to more than just government agencies."

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Science in Space!

What science is headed to the International Space Station with Orbital ATK’s cargo resupply launch? From investigations that study magnetic cell culturing to crystal growth, let’s take a look…

image

Orbital ATK is targeted to launch its Cygnus spacecraft into orbit on April 18, delivering tons of cargo, supplies and experiments to the crew onboard.

Efficacy and Metabolism of Azonafide Antibody-Drug Conjugates in Microgravity Investigation

In microgravity, cancer cells grow in 3-D. Structures that closely resemble their form in the human body, which allows us to better test the efficacy of a drug. This experiment tests new antibody drug conjugates.

image

These conjugates combine an immune-activating drug with antibodies and target only cancer cells, which could potentially increase the effectiveness of chemotherapy and potentially reduce the associated side-effects. Results from this investigation could help inform drug design for cancer patients, as well as more insight into how microgravity effects a drug’s performance.

Genes in Space

image

The Genes in Space-2 experiment aims to understand how the regulation of telomeres (protective caps on the tips of chromosomes) can change during spaceflight. Julian Rubinfien, 16-year-old DNA scientist and now space researcher, is sending his experiment to space as part of this investigation. 

3-D Cell Culturing in Space

Cells cultured in space spontaneously grow in 3-D, as opposed to cells cultured on Earth which grow in 2-D, resulting in characteristics more representative of how cells grow and function in living organisms. The Magnetic 3-D Cell Culture for Biological Research in Microgravity investigation will test magnetized cells and tools that may make it easier to handle cells and cell cultures.

This could help investigators improve the ability to reproduce similar investigations on Earth.

SUBSA

The Solidification Using a Baffle in Sealed Ampoules (SUBSA) investigation was originally operated successfully aboard the space station in 2002. 

image

Although it has been updated with modernized software, data acquisition, high definition video and communications interfaces, its objective remains the same: advance our understanding of the processes involved in semiconductor crystal growth. 

Space Debris

Out-of-function satellites, spent rocket stages and other debris frequently reenter Earth’s atmosphere, where most of it breaks up and disintegrates before hitting the ground. However, some larger objects can survive. The Thermal Protection Material Flight Test and Reentry Data Collection (RED-Data2) investigation will study a new type of recording device that rides alongside of a spacecraft reentering the Earth’s atmosphere. Along the way, it will record data about the extreme conditions it encounters, something scientists have been unable to test on a large scale thus afar.

image

Understanding what happens to a spacecraft as it reenters the atmosphere could lead to increased accuracy of spacecraft breakup predictions, an improved design of future spacecraft and the development of materials that can resist the extreme heat and pressure of returning to Earth. 

IceCube CubeSat

IceCube, a small satellite known as a CubeSat, will measure cloud ice using an 883-Gigahertz radiometer. Used to predict weather and climate models, IceCube will collect the first global map of cloud-induced radiances. 

image

The key objective for this investigation is to raise the technology readiness level, a NASA assessment that measures a technology’s maturity level.

Advanced Plant Habitat

Joining the space station’s growing list of facilities is the Advanced Plant Habitat, a fully enclosed, environmentally controlled plant habitat used to conduct plant bioscience research. This habitat integrates proven microgravity plant growth processes with newly-developed technologies to increase overall efficiency and reliability. 

image

The ability to cultivate plants for food and oxygen generation aboard the space station is a key step in the planning of longer-duration, deep space missions where frequent resupply missions may not be a possibility.

Watch Launch!

image

Orbital ATK and United Launch Alliance (ULA) are targeting Tuesday, April 18 for launch of the Cygnus cargo spacecraft to the International Space Station. Liftoff is currently slated for 11 a.m. EST.

Watch live HERE.

You can also watch the launch live in 360! This will be the world’s first live 360-degree stream of a rocket launch. Watch the 360 stream HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Hello, Scott? It’s President Obama.

This afternoon, President Obama spoke by phone with astronaut Scott Kelly to welcome him back to Earth from his record-breaking yearlong mission on the International Space Station. 

image

President Obama, above, is seen talking on the phone with Scott Kelly in the Oval Office on March 2, 2016. (Official White House Photo by Pete Souza)

The President thanked Kelly for his service, for sharing his journey with people across the globe through social media, for his participation in important research about what it will take for us to make long journeys in space, and for inspiring a new generation of young people to pursue studies and careers in science, technology, engineering, and mathematics. 

Hello, Scott? It’s President Obama.

The President also noted that Kelly’s year in space would provide critical data to researchers trying to understand how to keep astronauts healthy during long space voyages and fulfill the President’s vision of putting American astronauts on Mars in the 2030s. 

Thanks to Kelly’s work, in addition to that of everyone at NASA and in the U.S. space industry, the President believes the United States will be successful in that journey to Mars and will continue to lead and inspire the world in space exploration.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

Rockets, Racecars, and the Physics of Going Fast

The SLS rocket and Orion spacecraft launch off Launch Pad 39B at NASA’s Kennedy Space Center on November 16, 2022, beginning the Artemis I mission. The ignition from the rocket’s two boosters and four engines lights up the night sky. Smoke is seen building up from the ground as the rocket takes flight. Image credit:  NASA/Joel Kowsky

When our Space Launch System (SLS) rocket launches the Artemis missions to the Moon, it can have a top speed of more than six miles per second. Rockets and racecars are designed with speed in mind to accomplish their missions—but there’s more to speed than just engines and fuel. Learn more about the physics of going fast:

The SLS rocket and Orion spacecraft launch from the launch pad at NASA’s Kennedy Space Center on November 16, 2022, beginning the Artemis I mission. This is a close-up view of the solid rocket boosters and RS-25 engines ignited for flight. Image credit:  NASA/Joel Kowsky

Take a look under the hood, so to speak, of our SLS mega Moon rocket and you’ll find that each of its four RS-25 engines have high-pressure turbopumps that generate a combined 94,400 horsepower per engine. All that horsepower creates more than 2 million pounds of thrust to help launch our four Artemis astronauts inside the Orion spacecraft beyond Earth orbit and onward to the Moon. How does that horsepower compare to a racecar? World champion racecars can generate more than 1,000 horsepower as they speed around the track.

This GIF shows the four RS_25 engines on the SLS rocket igniting one by one as they prepare to launch Artemis I. A red glow comes from below the engines as they ignite. Image credit: NASA

As these vehicles start their engines, a series of special machinery is moving and grooving inside those engines. Turbo engines in racecars work at up to 15,000 rotations per minute, aka rpm. The turbopumps on the RS-25 engines rotate at a staggering 37,000 rpm. SLS’s RS-25 engines will burn for approximately eight minutes, while racecar engines generally run for 1 ½-3 hours during a race.

NASA engineers test a model of the Space Launch System rocket in a wind tunnel at NASA’s Langley Research Center. The image is taken from a test camera. Image credit: NASA

To use that power effectively, both rockets and racecars are designed to slice through the air as efficiently as possible.

While rockets want to eliminate as much drag as possible, racecars carefully use the air they’re slicing through to keep them pinned to the track and speed around corners faster. This phenomenon is called downforce.

This GIF shows a full-scale solid rocket booster being tested at Northrop Grumman’s facility in Utah. The booster, laying horizontal, ignites and fires. Image credit: Northrop Grumman

Steering these mighty machines is a delicate process that involves complex mechanics.

Most racecars use a rack-and-pinion system to convert the turn of a steering wheel to precisely point the front tires in the right direction. While SLS doesn’t have a steering wheel, its powerful engines and solid rocket boosters do have nozzles that gimbal, or move, to better direct the force of the thrust during launch and flight.

Members of the Artemis I launch control team monitor data at their consoles inside the Launch Control Center at NASA’s Kennedy Space Center during the first launch attempt countdown on August 29. Image credit: NASA/Kim Shiflett

Racecar drivers and astronauts are laser focused, keeping their sights set on the destination. Pit crews and launch control teams both analyze data from numerous sensors and computers to guide them to the finish line. In the case of our mighty SLS rocket, its 212-foot-tall core stage has nearly 1,000 sensors to help fly, track, and guide the rocket on the right trajectory and at the right speed. That same data is relayed to launch teams on the ground in real time. Like SLS, world-champion racecars use hundreds of sensors to help drivers and teams manage the race and perform at peak levels.

Rockets, Racecars, And The Physics Of Going Fast

Knowing how to best use, manage, and battle the physics of going fast, is critical in that final lap. You can learn more about rockets and racecars here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

How to See Comet NEOWISE

Observers all over the world are hoping to catch a glimpse of Comet NEOWISE before it speeds away into the depths of space, not to be seen again for another 6,800 years. 

For those that are, or will be, tracking Comet NEOWISE there will be a few particularly interesting observing opportunities this week. 

image

Over the coming days it will become increasingly visible shortly after sunset in the northwest sky.

image

The object is best viewed using binoculars or a small telescope, but if conditions are optimal, you may be able to see it with the naked eye. If you’re looking in the sky without the help of observation tools, Comet NEOWISE will likely look like a fuzzy star with a bit of a tail. Using binoculars will give viewers a good look at the fuzzy comet and its long, streaky tail. 

Here’s what to do:

Find a spot away from city lights with an unobstructed view of the sky

Just after sunset, look below the Big Dipper in the northwest sky

Each night, the comet will continue rising increasingly higher above the northwestern horizon.

image

There will be a special bonus for viewers observing comet NEOWISE from the northeast United States near Washington, DC. For several evenings, there will be a brief conjunction as the International Space Station will appear to fly near the comet in the northeast sky. Approximate times and locations of the conjunctions are listed below (the exact time of the conjunction and viewing direction will vary slightly based on where you are in the Washington, DC area):

July 17 :  ~10:56 p.m. EDT  = NEOWISE elevation: ~08°   Space Station elevation: ~14°

July 18 :  ~10:08 p.m. EDT  = NEOWISE elevation: ~13°   Space Station elevation: ~18°

July 19 :  ~10:57 p.m. EDT  = NEOWISE elevation: ~10°   Space Station elevation: ~08°

July 20 :  ~10:09 p.m. EDT  = NEOWISE elevation: ~17°   Space Station elevation: ~07°

It will be a late waning Moon, with the New Moon on July 20, so the viewing conditions should be good as long as the weather cooperates. 

Comet NEOWISE is about 3 miles across and covered in soot left over from its formation near the birth of our solar system 4.6 billion years ago - a typical comet.

image

Comets are frozen leftovers from the formation of the solar system composed of dust, rock and ices. They range from a few miles to tens of miles wide, but as they orbit closer to the sun, they heat up and spew gases and dust into a glowing head that can be larger than a planet. This material forms a tail that stretches millions of miles.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
It’s Official - We’re Headed To Do Science On The Sun! ☀️

It’s official - we’re headed to do science on the Sun! ☀️

At 11:03 p.m. EST on Sunday, Feb. 9, Solar Orbiter, an international collaboration between the European Space Agency and NASA, launched aboard United Launch Alliance’s #AtlasV rocket for its journey to our closest star. The spacecraft will help us understand how the Sun creates and controls the constantly changing space environment throughout the solar system. The more we understand about the Sun’s influence on the planets in our solar system and the space we travel through, the more we can protect our astronauts and spacecraft as we journey to the Moon, to Mars and beyond. More here. 

Image Credit: NASA Social participant, Jared Frankle

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Beached Berg in Alaska

Each year since 2009, geophysicist and pilot Chris Larsen has led two sets of flights to monitor Alaska’s mountain glaciers. From the air, scientists like Larsen collect critical information on how the region’s snow and ice is changing. They also are in a good position to snap photographs of the stunning landscape. Larsen was flying with NASA science writer Maria-Jose Viñas on board. During a flight on August 19, 2018, Viñas shot this photograph during a mission to survey Yakutat Icefield and nearby glaciers in southeast Alaska.

image

The beach and stream in the photograph are in Russel Fjord near the terminus of the Hubbard Glacier. While this photograph does not show any glaciers, evidence of their presence is all around. Meltwater winds down a vegetation-free path of glacial till. On its way toward open water, the stream cuts through a beach strewn with icebergs. “The Hubbard Glacier has a broad and active calving front providing a generous supply of icebergs,” said Larsen, a researcher at the University of Alaska, Fairbanks. “They are present all summer since new ones keep coming from the glacier.”

NASA’s Operation IceBridge makes lengthy flights each year over the landmasses of Greenland and Antarctica and their surrounding sea ice. While IceBridge-Alaska flights are shorter in length, the terrain is equally majestic and its snow and ice important to monitor. Wherever IceBridge flights are made, data collection depends in part on weather and instruments.

Read more: https://go.nasa.gov/2Mj48r0

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

Six Things You Need to Know About the Green Propellant Infusion Mission

Next week, we’re launching a new “green” fuel to space for the first time! The Green Propellant Infusion Mission (GPIM)—which consists of a non-toxic liquid, compatible propulsion system and the small satellite it’s riding on—will demonstrate how our technology works so that future missions can take advantage of this safer, more efficient fuel alternative.

image

Here are six key facts to know about our Green Propellant Infusion Mission:

1) The Air Force Research Lab developed the “green” fuel. 

The AFRL’s hydroxyl ammonium nitrate fuel/oxidizer blend—called AF-M315E—is actually peach in color. This liquid doesn’t require the kind of strict, handling protocols that conventional chemicals currently require. Think shirtsleeves instead of hazmat suits, which could reduce pre-launch ground processing time for a spacecraft from weeks to days!

image

Image Credit: Air Force Research Lab

2) It’s safer and more efficient.

The non-toxic fuel offers nearly 50% better performance when compared to today’s highly toxic chemical propellant, hydrazine. That’s equivalent to getting 50% more miles per gallon on your car. This means spacecraft can travel farther or operate for longer with less propellant in their fuel tanks. 

image

3) The fuel can handle extreme temperatures.

Even on missions to extremely cold environments, such as the south pole of Mars – where temperatures can dip as low as -225 degrees Fahrenheit and carbon-dioxide ice “spiders” can form (see below) – AF-M315E won’t freeze, but rather just transforms into a glass transition phase. This means even though it turns into a solid, it won’t cause spacecraft components to stretch or expand, so the spacecraft only has to warm up the fuel when it needs it.

image

4) Industry is already lining up to use the technology.

Our commercial partners report that there is a lot of interest and potential for this tech. After we successfully prove how it works in space, small satellites to large spacecraft could benefit by using the green propellant system. It’d only be a matter of time before companies begin building the new systems for market.

image

5) GPIM required a team of talented engineers.

Engineers at Aerojet Rocketdyne in Redmond, Washington developed new, optimized hardware like thrusters, tanks, filters and valves to work with the green fuel. GPIM uses a set of thrusters that fire in different scenarios to test engine performance and reliability. 

image

Ball Aerospace of Boulder, Colorado designed and built the mini fridge-sized spacecraft bus and pieced it all together.

image

Before being ready for flight, GPIM components went through rigorous testing at multiple NASA centers including our Glenn Research Center, Goddard Space Flight Center and Kennedy Space Center. The program team at Marshall Space Flight Center manages the mission. Once in orbit, researchers will work together to study how the fuel is performing as they manipulate the spacecraft. The demonstration mission will last about 13 months.

6) GPIM will hitch a ride on a SpaceX Falcon Heavy rocket.

SpaceX’s Falcon Heavy rocket will launch for a third time for the U.S. Department of Defense’s Space Test Program-2 (STP-2) mission targeted for June 24, 2019 at 11:30 p.m. EDT. With nearly two dozen other satellites from government, military and research institutions, GPIM will deploy within a few hours after launch from NASA’s Kennedy Space Center in Florida. The SpaceX Falcon Heavy launch will be live-streamed here: https://www.nasa.gov/live

image

Follow @NASA_Technology on Twitter for news about GPIM’s launch.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

can you describe how earth looks like from space?


Tags
  • boldog-tudatlansag
    boldog-tudatlansag liked this · 4 years ago
  • weirywolf
    weirywolf liked this · 5 years ago
  • galestral
    galestral liked this · 5 years ago
  • jadeblackwellsblog
    jadeblackwellsblog reblogged this · 5 years ago
  • swrilofsummerbreeze-realitycheck
    swrilofsummerbreeze-realitycheck reblogged this · 7 years ago
  • marko-man
    marko-man reblogged this · 7 years ago
  • artimies6
    artimies6 reblogged this · 7 years ago
  • colorfulbirdtree-blog
    colorfulbirdtree-blog reblogged this · 7 years ago
  • colorfulbirdtree-blog
    colorfulbirdtree-blog liked this · 7 years ago
  • holometabolism
    holometabolism reblogged this · 7 years ago
  • 24h7
    24h7 reblogged this · 7 years ago
  • acommonanomaly
    acommonanomaly reblogged this · 8 years ago
  • acommonanomaly
    acommonanomaly liked this · 8 years ago
  • across-the-cypress-trees
    across-the-cypress-trees reblogged this · 8 years ago
  • wanderontherocks
    wanderontherocks reblogged this · 8 years ago
  • h0miecidal
    h0miecidal reblogged this · 8 years ago
  • clairvoyant-fry-cook
    clairvoyant-fry-cook reblogged this · 8 years ago
  • crawfordtheturtle
    crawfordtheturtle reblogged this · 8 years ago
  • tumbleweed-chaser
    tumbleweed-chaser liked this · 8 years ago
  • spuddymuffin
    spuddymuffin liked this · 8 years ago
  • sylvermyth
    sylvermyth reblogged this · 8 years ago
  • xpertghosts
    xpertghosts liked this · 8 years ago
  • incessantthinkingkid-blog
    incessantthinkingkid-blog liked this · 8 years ago
  • unclaimed-username
    unclaimed-username reblogged this · 8 years ago
  • always-smi1e
    always-smi1e reblogged this · 8 years ago
  • 24h7
    24h7 liked this · 8 years ago
  • jeza-jezaro
    jeza-jezaro reblogged this · 8 years ago
  • g00dg0lliemissm0llie
    g00dg0lliemissm0llie liked this · 8 years ago
  • ileref
    ileref reblogged this · 8 years ago
  • coeluscoeli
    coeluscoeli liked this · 8 years ago
  • ca00-blog
    ca00-blog liked this · 8 years ago
  • but-dont-we-all-blog
    but-dont-we-all-blog reblogged this · 8 years ago
  • tchintchun
    tchintchun reblogged this · 8 years ago
  • solrift
    solrift reblogged this · 8 years ago
  • maybecomedy
    maybecomedy liked this · 8 years ago
  • themapletreesremember
    themapletreesremember reblogged this · 8 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags