In case you don’t know, the Juno spacecraft entered orbit around the gas giant on July 4, 2016…about a year ago. Since then, it has been collecting data and images from this unique vantage point.
Juno is in a polar orbit around Jupiter, which means that the majority of each orbit is spent well away from the gas giant. But once every 53 days its trajectory approaches Jupiter from above its north pole, where it begins a close two-hour transit flying north to south with its eight science instruments collecting data and its JunoCam camera snapping pictures.
Space Fact: The download of six megabytes of data collected during the two-hour transit can take one-and-a-half days!
Juno and her cloud-piercing science instruments are helping us get a better understanding of the processes happening on Jupiter. These new results portray the planet as a complex, gigantic, turbulent world that we still need to study and unravel its mysteries.
Juno’s imager, JunoCam, has showed us that both of Jupiter’s poles are covered in tumultuous cyclones and anticyclone storms, densely clustered and rubbing together. Some of these storms as large as Earth!
These storms are still puzzling. We’re still not exactly sure how they formed or how they interact with each other. Future close flybys will help us better understand these mysterious cyclones.
Seen above, waves of clouds (at 37.8 degrees latitude) dominate this three-dimensional Jovian cloudscape. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image.
An even closer view of the same image shows small bright high clouds that are about 16 miles (25 kilometers) across and in some areas appear to form “squall lines” (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly comprised of water and/or ammonia ice.
Juno’s Microwave Radiometer is an instrument that samples the thermal microwave radiation from Jupiter’s atmosphere from the tops of the ammonia clouds to deep within its atmosphere.
Data from this instrument suggest that the ammonia is quite variable and continues to increase as far down as we can see with MWR, which is a few hundred kilometers. In the cut-out image below, orange signifies high ammonia abundance and blue signifies low ammonia abundance. Jupiter appears to have a band around its equator high in ammonia abundance, with a column shown in orange.
Why does this ammonia matter? Well, ammonia is a good tracer of other relatively rare gases and fluids in the atmosphere...like water. Understanding the relative abundances of these materials helps us have a better idea of how and when Jupiter formed in the early solar system.
This instrument has also given us more information about Jupiter’s iconic belts and zones. Data suggest that the belt near Jupiter’s equator penetrates all the way down, while the belts and zones at other latitudes seem to evolve to other structures.
Prior to Juno, it was known that Jupiter had the most intense magnetic field in the solar system…but measurements from Juno’s magnetometer investigation (MAG) indicate that the gas giant’s magnetic field is even stronger than models expected, and more irregular in shape.
At 7.766 Gauss, it is about 10 times stronger than the strongest magnetic field found on Earth! What is Gauss? Magnetic field strengths are measured in units called Gauss or Teslas. A magnetic field with a strength of 10,000 Gauss also has a strength of 1 Tesla.
Juno is giving us a unique view of the magnetic field close to Jupiter that we’ve never had before. For example, data from the spacecraft (displayed in the graphic above) suggests that the planet’s magnetic field is “lumpy”, meaning its stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action (where the motion of electrically conducting fluid creates a self-sustaining magnetic field) closer to the surface, above the layer of metallic hydrogen. Juno's orbital track is illustrated with the black curve.
Juno also observed plasma wave signals from Jupiter’s ionosphere. This movie shows results from Juno's radio wave detector that were recorded while it passed close to Jupiter. Waves in the plasma (the charged gas) in the upper atmosphere of Jupiter have different frequencies that depend on the types of ions present, and their densities.
Mapping out these ions in the jovian system helps us understand how the upper atmosphere works including the aurora. Beyond the visual representation of the data, the data have been made into sounds where the frequencies and playback speed have been shifted to be audible to human ears.
The complexity and richness of Jupiter’s “southern lights” (also known as auroras) are on display in this animation of false-color maps from our Juno spacecraft. Auroras result when energetic electrons from the magnetosphere crash into the molecular hydrogen in the Jovian upper atmosphere. The data for this animation were obtained by Juno’s Ultraviolet Spectrograph.
During Juno’s next flyby on July 11, the spacecraft will fly directly over one of the most iconic features in the entire solar system – one that every school kid knows – Jupiter’s Great Red Spot! If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno.
Learn more about the Juno spacecraft and its mission at Jupiter HERE.
For the second time in history, a human-made object has reached the space between the stars. Our Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.
Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1, crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.
Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.
Read more at https://go.nasa.gov/2QG2s16 or follow along with the mission @NASAVoyager on Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Can you hear this exoplanet screaming? As the exoplanet known as HD 80606 b approaches its star from an extreme, elliptical orbit, it suffers star-grazing torture that causes howling, supersonic winds and shockwave storms across this world beyond our solar system. Its torturous journey boils its atmosphere to a hellish 2,000 degrees Fahrenheit every 111 days, roasting both its light and dark sides. HD 80606b will never escape this scorching nightmare. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.
Make sure to follow us on Tumblr for your regular dose of space!
Food: everyone needs it to survive and in space there’s no exception. Let’s take a closer look at what astronauts eat while in space.
Since the start of human spaceflight, we’ve worked to improve the taste, texture and shelf life of food for our crews. Our food scientists are challenged with developing healthy menus that can meet all of the unique requirements for living and working in the extreme environment of space.
Consider the differences of living on Earth and in space. Food scientists must develop foods that will be easier to handle and consume in a microgravity environment. These food products require no refrigeration and provide the nutrition humans need to remain healthy during spaceflight.
Freeze drying food allows food to remain stable at ambient temperatures, while also significantly reducing the weight.
Astronauts use tortillas in many of their meals
Tortillas provide an edible wrapper to keep food from floating away. Why tortillas and not bread? Tortillas make far less crumbs and can be stored easier. Bread crumbs could potentially float around and get stuck in filters or equipment.
The first food eaten by an American astronaut in space: Applesauce
The first American astronaut to eat in space dined on applesauce squeezed from a no-frills, aluminum toothpaste-like tube. Since then, food technology has cooked up better ways to prepare, package and preserve space fare in a tastier, more appetizing fashion.
All food that is sent to the space station is precooked
Sending precooked food means that it requires no refrigeration and is either ready to eat or can be prepared simply by adding water or by heating. The only exception are the fruit and vegetables stowed in the fresh food locker.
Salt and pepper are used in liquid form on the International Space Station
Seasonings like salt and pepper have to be used in liquid form and dispensed through a bottle on the space station. If they were granulated, the particles would float away before they even reached the food.
Food can taste bland in space
Some people who live in space have said that food is not the same while in microgravity. Some say that it tastes bland, some do not like their favorite foods and some love to eat foods they would never eat on Earth. We believe this phenomenon is caused by something called “stuffy head” This happens when crew member’s heads get stopped up because blood collects in the upper part of the body. For this reason, hot sauce is used A LOT on the space station to make up for the bland flavor.
Astronaut ice cream is not actually eaten on the space station
Even though astronaut ice cream is sold in many science centers and enjoyed by many people on Earth, it’s not actually sent to the space station. That said, whenever there is space in a freezer heading to orbit, the astronauts can get real ice cream onboard!
Instead of bowls there are bags and cans
Most American food is stored in sealed bags, while most Russian food is kept in cans.
Here’s what the crew aboard the space station enjoyed during Thanksgiving in 2015:
Smoked Turkey
Candied Yams
Rehydratable Corn
Potatoes Au Gratin
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Would you smooch an alien?
Depends what he looks like!
Dangling in a previously unexplored lava tunnel on the Moon...
...with a massive solar flare passing overhead...
...causing unsafe radiation levels.
All communications have been interrupted.
Status of Commander Callie Rodriguez: unknown.
In our first issue of "First Woman," we followed Callie on her trailblazing journey to the Moon. Find out what’s next for our fictional first woman in a story inspired by real NASA astronauts and our upcoming Artemis missions to land the first female astronaut and person of color on the lunar surface.
See what discoveries – and challenges – lay ahead for Callie and her fellow human and robotic explorers as they forge a path to expand humanity's understanding of the universe.
Coming soon in English and Spanish at nasa.gov/calliefirst!
Make sure to follow us on Tumblr for your regular dose of space!
On June 21, 2020 an annular solar eclipse passed over parts of Asia and Africa. Eclipses happen when the Moon lines up just right between the Sun and Earth, allowing it to block out part or all of the Sun’s bright face and cast a shadow on Earth.
On that day, the International Space Station was orbiting over Kazakhstan and into China when this picture of the solar eclipse shadowing a portion of the Asian continent was captured by an external high definition camera. In the left foreground, is the H-II Transfer Vehicle-9 from Japan.
Here is another angle as seen from the orbital lab. In the left foreground, is the Progress 74 resupply ship from Russia.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A pod of curious dolphins added extra meaning and porpoise to the recovery of Crew-9′s SpaceX Dragon capsule and its four explorers shortly after splashdown. Inside the capsule were astronauts Nick Hague, Suni Williams, Butch Wilmore, and cosmonaut Aleksandr Gorbunov, who splashed down off the coast of Florida at 5:57pm ET (2127 UTC) on March 18, 2025, concluding their scientific mission to the International Space Station. See Crew-9 return from deorbit to splashdown in this video. (The dolphins appear at 1:33:56.)
This week, we’re setting out on an ambitious quest: our first mission to retrieve a sample from an asteroid and return it to the Earth.
1. Take It from the Beginning
Some asteroids are time capsules from the very beginnings of our solar system. Some meteorites that fall to Earth originate from asteroids. Laboratory tests of materials found in meteorites date to before the sun started shining. OSIRIS-REx's destination, the near-Earth asteroid Bennu, intrigues scientists in part because it is thought to be composed of the primitive building blocks of the solar system.
Meet asteroid Bennu
Take a tour of asteroids in our solar system.
2. Creating the Right Ship for the Journey
At the heart of the OSIRIS-REx mission is the robotic spacecraft that will fly to Bennu, acting as the surrogate eyes and hands of researchers on Earth. With its solar panels deployed, the craft is about 20 feet (6 meters) long and 10 feet (3 meters) high. Packed into that space are the sample retrieval system, the capsule for returning the sample to the ground on Earth, plus all the hardware for navigation and communicating with home.
Explore the instruments and how they work
3. School of Hard Rocks
If you're a teacher or a student, the OSIRIS-REx mission and exploring asteroids make for some engaging lesson material. Here are some of the things you can try.
Find dozens of lesson plans
4. Standing (or Flying) on the Shoulders of Giants
OSIRIS-REx is not the first time we have explored an asteroid. Several robotic spacecraft led the way, such as the NEAR Shoemaker probe that orbited, and even landed on, the asteroid Eros.
Meet the asteroid pioneers and see what they discovered
5. The Probability of Successfully Navigating an Asteroid Field is...Pretty High
How much of what we see in movies about asteroids is fact, and how much is fiction? This video lays out the basics. (Spoiler alert: even though there are millions of them, the average distance between asteroids in the main belt is something like 1.8 million miles, or about three million kilometers.)
+ Watch + See more videos that explain asteroids and the mission
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month is filled with exciting celestial sights. Here are 10 targets you can view this month:
10. Unusual Sunset
During a sunset, our thick atmosphere absorbs most colors of sunlight, but red light is absorbed the least. Rarely, green flashes can be seen just above the sun’s edge. As the last sliver of the disk disappears below the horizon, be sure to watch its color.
9. Belt of Venus
Just after sunset, turn around and face east. A dark shadow will move up from the horizon and gradually cover the pinkish sky. This is caused from the Earth itself blocking the sunlight and is called the Earth Shadow or the Belt of Venus.
8. Crepuscular Rays
Also just after sunset, or before dawn, you may see rays of sunlight spread like a fan. These are called crepuscular rays and are formed when sunlight streams through gaps in the clouds or mountains.
7. Aurora Borealis
The northern lights, also known as the aurora borealis, are caused by collisions between gaseous particles in Earth’s atmosphere and charged particles released from the sun. The color of the lights can changed depending on the type of gas being struck by particles of solar wind. You can find out when and where to expect aurorae at the Space Weather Prediction Center.
6. Andromeda Galaxy
Did you now that The Andromeda Galaxy is one of the few you can actually see with your naked eye? In October, look nearly overhead after sunset to see it! This galaxy is more than twice the apparent width of the moon.
5. Moon Features
Nights in mid-October are excellent for viewing the features on the moon. Areas like the Sea of Tranquility and the site of the 1969 Apollo 11 landing will be visible.
4. A Comet
This month, the European Space Agency’s Rosetta mission target, a comet with a complicated name (Comet 67P Churyumov-Gerasimenko), is still bright enough for experienced astronomers to pick out in a dark sky. On October 9, you may be able to spot it in the east near the crescent moon and Venus.
3. Meteor Showers
There are multiple meteor showers this month. On the 9th: watch the faint, slow-moving Draconids. On the 10th: catch the slow, super-bright Taurids. And on the 21st: don’t’ miss the swift and bright Orionids from the dust of Comet Halley.
2. Three Close Planets
On October 28, you’ll find a tight grouping of Jupiter, Venus and Mars in the eastern sky before sunrise.
1. Zodiacal Light
The Zodiacal light is a faint triangular glow that can be seen from a dark sky after sunset or before sunrise. What you’re seeing is sunlight reflecting off dust grains that circle the sun in the inner solar system. These dust grains travel in the same plane as the moon and planets as they journey across our sky.
For more stargazing tools visit: Star Tool Box
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Good luck to your student! Reach for Mars!
Morning Jeanette. My 10 year son old recently told me his dream job that he would love to do is to become an Astronaut or be apart of a team that builds a spaceship. What is your best suggestion for me as his parent to help expose him to know what life is like for an astronaut and how much work did you put in your education to help you solidify your career that I can use as encouragement for him? Thanks again and you're AWESOME.
I spent 11 and a half years in school after high school, so I tell this to students because it takes a lot of investment in educating yourself. Then even beyond that, gaining experiences that are meaningful. After graduate school, working at Ford Motor Company and the CIA really taught me how to be a detailed scientist as well as working operationally in the field. I also did internships to help hone and sharpen skills as an engineer. I was happy with my career, and then I applied.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts