Water is a precious resource -- especially on the Moon! In the near future, robotic rovers may roam the Moon’s poles in search of hidden reservoirs of water beneath the lunar surface. But traversing the poles can be a perilous journey. Depending on the Sun’s position in the sky and the way that its light falls on the surface, hazards such as boulders and craters can be difficult, if not impossible, to see.
Inside our Lunar Lab at Ames Research Center, researchers are using Hollywood light kits and a giant sandbox filled with 8 tons of artificial Moon dirt to simulate driving conditions at the poles. The research aims to provide rovers and their human supervisors with 3-D hazard maps of the Moon’s terrain, helping them to avoid potential obstacles that lie ahead.
Researchers begin with a map of the Moon’s terrain that’s randomly generated by a computer. Each scene is based on observations made from lunar orbit. The map indicates the number, location and size of features like rocks and craters that should be placed inside the 12x12-foot testbed.
Using the map as a guide, researchers build the terrain by hand with everyday tools. The terrain is then dusted with a top layer of artificial Moon dirt to eliminate shovel and brush marks.
Lights are positioned at different locations around the testbed. One by one, the lights are switched on and off while a camera captures images of the terrain. Notice how the appearance of the terrain changes depending on the source of illumination.
Using a computer algorithm, a 3-D hazard detection model of the terrain is generated from the images. The model provides important information about the size of an obstacle, its height and where it’s located.
With this technique, researchers can teach a rover to recognize the effect of different lighting conditions on the Moon’s poles. The tool could come in handy for future lunar rover missions like Resource Prospector, which will use a drill to search for subsurface water and other compounds on the Moon.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Recent news articles have reported that “newly declassified” audiotapes reveal that Apollo 10 astronauts heard “outer-spacey” music as the spacecraft flew around the far side of the moon in 1969.
While listed as ‘confidential’ in 1969 at the height of the Space Race, Apollo 10 mission transcripts and audio have been publicly available since 1973. Since the Internet did not exist in the Apollo era, we have only recently provided digital files for some of those earlier missions. The Apollo 10 audio clips were uploaded in 2012, but the mission’s audio recordings have been available at the National Archives since the early 1970s.
As for the likely source of the sounds, Apollo 10 Lunar Module Pilot Gene Cernan told us on Monday, ‘I don’t remember that incident exciting me enough to take it seriously. It was probably just radio interference. Had we thought it was something other than that we would have briefed everyone after the flight. We never gave it another thought.’
If you’d like to listen to the audio file, it is available HERE (starting at 2:50).
The full transcript is available HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Back in the day, movies started with a cartoon. Learn the secrets of the Red Planet in these animated 60 second chunks.
Watch two galaxies collide billions of years from now in this high-definition visualization.
Wait for the dark of the waning Moon next weekend to take in this 4K tour of our constant celestial companion.
Watch graceful dances in the Sun’s atmosphere in this series of videos created by our 24/7 Sun-sentinel, the Solar Dynamic Observatory (SDO).
Crank up the volume and learn about NASA science for this short video about some of our science missions, featuring a track by Fall Out Boy.
Follow an asteroid from its humble origins to its upcoming encounter with our spacecraft in this stunning visualization.
Join Apollo mission pilots as they fly—and even crash—during daring practice runs for landing on the Moon.
Join the crew of Apollo 8 as they become the first human beings to see the Earth rise over the surface of the Moon.
Watch a musical, whimsical recreation of the 2005 Huygens probe descent to Titan, Saturn’s giant moon.
Our Goddard Scientific Visualization Studio provides a steady stream of fresh videos for your summer viewing pleasure. Come back often and enjoy.
Read the full version of this article on the web HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Once every four years, an extra calendar day is added: a leap day. But why?
The reason for adding leap days to the calendar is to align the calendar year with the actual year – which is defined by the time it takes Earth to circle the sun. It is equal to 365 days, 5 hours, 48 minutes and 46 seconds, or 365.24219 days.
If all calendar years contained exactly 365 days, they would drift from the actual year by about 1 day every 4 years. Eventually, July would occur during the northern hemisphere winter! Wouldn’t that be weird?
To correct (approximately), we add 1 day every 4 years...resulting in a leap year.
By making most years 365 days but every fourth year 366 days, the calendar year and the actual year remain more nearly in step.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Discoveries in planetary science are often both weird and wonderful, and these newest announcements are no exception. This week we present a few of the most interesting recent scientific findings from our missions and NASA-funded planetary science. Take a look:
1. Seeing Spots
Scientists from our Dawn mission unveiled new images from the spacecraft’s lowest orbit at the dwarf planet Ceres, including highly anticipated views of the famous “bright spots” of Occator Crater. Take a look HERE.
2. Pluto’s Secrets Brought to Light
A year ago, Pluto was just a bright speck in the cameras of our approaching New Horizons spacecraft, not much different than its appearances in telescopes since Clyde Tombaugh discovered the dwarf planet in 1930. Now, New Horizons scientists have authored the first comprehensive set of papers describing results from last summer’s Pluto system flyby. Find out more HERE.
3. Rising Above the Rest
In a nod to extraterrestrial mountaineers of the future, scientists working on our Cassini mission have identified the highest point on Saturn’s largest moon, Titan. The tallest peak is 10,948 feet (3,337 meters) high and is found within a trio of mountainous ridges called the Mithrim Montes, named for the mountains in Tolkien’s Middle-Earth.
4. Does the “Man in the Moon” Have a New Face?
New NASA-funded research provides evidence that the spin axis of Earth’s moon shifted by about five degrees roughly three billion years ago. The evidence of this motion is recorded in the distribution of ancient lunar ice, evidence of delivery of water to the early solar system.
5. X-Ray Vision
Solar storms are triggering X-ray auroras on Jupiter that are about eight times brighter than normal over a large area of the planet and hundreds of times more energetic than Earth’s “northern lights,” according to a new study using data from our Chandra X-ray Observatory.
Want to learn more? Read our full list of things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Image Credit: Department of Transportation. U.S. Coast Guard. Office of Public and International Affairs
It was the raw courage of the more than 160,000 Allied troops who stormed an 80-kilometer (50-mile) stretch of heavily fortified beaches in Normandy, France, that made victory on D-Day possible. But without the sound advice of meteorologists and geologists working behind the scenes, one of the most consequential battles in human history could have gone quite differently.
As D-Day neared, the American meteorologists predicted fair weather on June 5 and pushed for invasion, based on a forecasting method that gave great weight to historical weather conditions for a given date and location. The British forecasters took a different approach, focusing instead on analyzing measurements of temperature, pressure, and humidity to try to map out weather fronts. Unlike the Americans, the British teams predicted low clouds and stormy weather on June 5. At the last minute, Captain James Martin Stagg, the highest ranking of the meteorologists, convinced Eisenhower to postpone the invasion.
NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey
Meanwhile, on the other side of the English Channel, German meteorologists had come to the same conclusion—and then some. Their forecasters had predicted that gale-force winds would arrive on June 5 and persist until mid-June. The Germans were so confident that the Allies would not dare attack that they allowed many soldiers to leave their posts on the beaches and take part in war games in Rennes, France. Field Marshal Erwin Rommel felt comfortable enough to return to Germany to deliver a pair of shoes to his wife as a birthday present.
Image Credit: Department of Defense. Department of the Army. Office of the Deputy Chief of Staff for Operations. U.S. Army Audiovisual Center. ca. 1974-5/15/1984
When the first paratroopers were dropped behind enemy lines around midnight and the first wave of Allied boats began to swarm the beaches at dawn on June 6, the weather was still far from ideal. Cloud cover meant many paratroopers ended up in the wrong locations, and rough seas and high winds made the task of landing boats and unloading tanks a terrible challenge. But by noon the skies cleared, just as the Allied meteorologists had predicted. The Germans, meanwhile, had been caught off guard. That day the Allies endured thousands of causalities, but they established a toehold in France that they would never give up.
NASA Earth Observatory images by Joshua Stevens, using Landsat data from the U.S. Geological Survey
An enormous amount of scientific expertise went into even the most unscientific of tasks, like rolling a tank up the Normandy beaches. Prior to the invasion, Allied military planners studied nearly one million aerial photographs of the shores of Normandy to find the best landing sites. The aerial photographs would have looked something like the Landsat 8 images shown above. Acquired by the Operational Land Imager (OLI) on July 15, 2018, these image offer a top-down view of the sandy Normandy beaches that were center stage on D-Day.
Read the full story: https://earthobservatory.nasa.gov/images/145143/forecasting-d-day
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This week, we’re celebrating National Composites Week, which CompositesWorld says is about shedding some light on how “composite materials and composites manufacturing contributes to the products and structures that shape the American manufacturing landscape today.”
Composites are building materials that we use to make airplanes, spacecraft and structures or instruments, such as space telescopes. But why are they special?
Composites consist of two or more materials, similar to a sandwich. Each ingredient in a sandwich could be eaten individually, but combining them is when the real magic happens. Sure, you could eat a few slices of cold cheese chased with some floppy bread. But real talk: buttery, toasted bread stuffed with melty, gooey Gouda makes a grilled cheese a much more satisfying nosh.
With composites—like our sandwich—the different constituent parts each have special properties that are enhanced when combined. Take carbon fibers which are strong and rigid. Their advantage compared to other structural materials is that they are much lighter than metals like steel and aluminum. However, in order to build structures with carbon fibers, they have to be held together by another material, which is referred to as a matrix. Carbon Fiber Reinforced Polymer is a composite consisting of carbon fibers set in a plastic matrix, which yields an extremely strong, lightweight, high-performing material for spacecraft.
Composites can also be found on the James Webb Space Telescope. They support the telescope’s beryllium mirrors, science instruments and thermal control systems and must be exquisitely stable to keep the segments aligned.
We invest in a variety of composite technology research to advance the use of these innovative materials in things like fuel tanks on spacecraft, trusses or structures and even spacesuits. Here are a few exciting ways our Space Technology Mission Directorate is working with composites:
We’re developing deployable composite booms for future deep space small satellite missions. These new structures are being designed to meet the unique requirements of small satellites, things like the ability to be packed into very small volumes and stored for long periods of time without getting distorted.
A new project, led by our Langley Research Center and Ames Research Center, called the Advanced Composite Solar Sail System will test deployment of a composite boom solar sail system in low-Earth orbit. This mission will demonstrate the first use of composite booms for a solar sail in orbit as well as new sail packing and deployment systems.
We are working alongside 11 universities, two companies and the Air Force Research Laboratory through the Space Technology Research Institute for Ultra-Strong Composites by Computational Design (US-COMP). The institute is receiving $15 million over five years to accelerate carbon nanotube technologies for ultra-high strength, lightweight aerospace structural materials. This institute engages 22 professors from universities across the country to conduct modeling and experimental studies of carbon nanotube materials on an atomistic molecular level, macro-scale and in between. Through collaboration with industry partners, it is anticipated that advances in laboratories could quickly translate to advances in manufacturing facilities that will yield sufficient amounts of advanced materials for use in NASA missions.
Through Small Business Innovative Research contracts, we’ve also invested in Nanocomp Technologies, Inc., a company with expertise in carbon nanotubes that can be used to replace heavier materials for spacecraft, defense platforms, and other commercial applications.
Nanocomp’s Miralon™ YM yarn is made up of pure carbon nanotube fibers that can be used in a variety of applications to decrease weight and provide enhanced mechanical and electrical performance. Potential commercial use for Miralon yarn includes antennas, high frequency digital/signal and radio frequency cable applications and embedded electronics. Nanocomp worked with Lockheed Martin to integrate Miralon sheets into our Juno spacecraft.
At last spring’s 3D-Printed Habitat Challenge the top two teams used composite materials in their winning habitat submissions. The multi-phase competition challenged teams to 3D print one-third scale shelters out of recyclables and materials that could be found on deep space destinations, like the Moon and Mars.
After 30 hours of 3D-printing over four days of head-to-head competition, the structures were subjected to several tests and evaluated for material mix, leakage, durability and strength. New York-based AI. SpaceFactory won first place using a polylactic acid plastic, similar to materials available for Earth-based, high-temperature 3D printers.
This material was infused with micro basalt fibers as well, and the team was awarded points during judging because major constituents of the polylactic acid material could be extracted from the Martian atmosphere.
Second place was awarded to Pennsylvania State University who utilized a mix of Ordinary Portland Cement, a small amount of rapid-set concrete, and basalt fibers, with water.
These innovative habitat concepts will not only further our deep space exploration goals, but could also provide viable housing solutions right here on Earth.
We are also supporting the next generation of engineers, scientists and technologists working on composites through our Space Technology Research Grants. Some recently awarded NASA Space Technology Fellows—graduate students performing groundbreaking, space technology research on campus, in labs and at NASA centers—are studying the thermal conductivity of composites and an optimized process for producing carbon nanotubes and clean energy.
We work with composites in many different ways in pursuit of our exploration goals and to improve materials and manufacturing for American industry. If you are a company looking to participate in National Composites Week, visit: https://www.nationalcompositesweek.com.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Imagine how long it would take to eat a candy cane that’s a thousand trillion miles tall! 😋
Scientists peering into the center of our Milky Way galaxy found this 190-light-year tall “candy cane,” but (sadly) it is not a peppermint treat. It does contain other goodies, though. They have found huge collections of material, called giant molecular clouds, where stars are being born. And there are magnetic fields that might be evidence of a bubble from an outburst in our galactic center long ago.
The full image shows our galaxy’s center in infrared (blue), radio (red) and microwave (“minty” green) light. The picture essentially color codes different ways light is produced. The blue and cyan regions show us cool dust where star formation has just begun. Yellow features show more-established star “factories.” Red reveals places where electrically charged gas interacts with magnetic fields.
This image includes newly published observations using an instrument designed and built at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, called the Goddard-IRAM Superconducting 2-Millimeter Observer (GISMO). It was used with a 30-meter radio telescope located on Pico Veleta, Spain, operated by the Institute for Radio Astronomy in the Millimeter Range headquartered in Grenoble, France. The image shows a region about 750 light-years wide.
Find out more about this image and what we can learn from studying star factories!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
You may have seen the famous blue marble or pale blue dot images showing Earth from 18,000 and 3.7 billion miles away, respectively. But closer to home — some 300 miles above Earth's surface — you might encounter an unfamiliar sight: vibrant swaths of red and green or purple and yellow light emanating from the upper atmosphere.
This light is airglow.
Airglow is created when atoms and molecules in the upper atmosphere, excited by sunlight, emit light to shed excess energy. Or, it can happen when atoms and molecules that have been ionized by sunlight collide with and capture a free electron. In both cases, these atmospheric particles emit light in order to relax again. The process is similar to how auroras are created, but while auroras are driven by high-energy solar wind, airglow is energized by day-to-day solar radiation.
Since sunlight is constant, airglow constantly shines throughout Earth’s atmosphere, and the result is a tenuous bubble of light that closely encases our planet. Its light is too dim to see easily except in orbit or on the ground with clear, dark skies and a sensitive camera — it’s one-tenth as bright as the light given off by all the stars in the night sky.
Airglow highlights a key part of our atmosphere: the ionosphere. Stretching from roughly 50 to 400 miles above Earth’s surface, the ionosphere is an electrified layer of the upper atmosphere generated by extreme ultraviolet radiation from the Sun. It reacts to both terrestrial weather below and solar energy streaming in from above, forming a complex space weather system. Turbulence in this ever-changing sea of charged particles can manifest as disruptions that interfere with Earth-orbiting satellites or communication and navigation signals.
Understanding the ionosphere’s extreme variability is tricky because it requires untangling interactions between the different factors at play — interactions of which we don’t have a clear picture. That’s where airglow comes in. Each atmospheric gas has its own favored airglow color, hangs out at a different height and creates airglow by a different process, so we can use airglow to study different layers of the atmosphere.
Airglow carries information on the upper atmosphere’s temperature, density, and composition, but it also helps us trace how particles move through the region itself. Vast, high-altitude winds sweep through the ionosphere, pushing its contents around the globe — and airglow’s subtle dance follows their lead, highlighting global patterns.
Two NASA missions take advantage of precisely this effect to study the upper atmosphere: ICON — short for Ionospheric Connection Explorer — and GOLD — Global-scale Observations of the Limb and Disk.
ICON focuses on how charged and neutral gases in the upper atmosphere behave and interact, while GOLD observes what drives change — the Sun, Earth’s magnetic field or the lower atmosphere — in the region.
By imaging airglow, the two missions will enable scientists to tease out how space and Earth’s weather intersect, dictating the region’s complex behavior.
Keep up with the latest in NASA's airglow and upper atmosphere research on Twitter and Facebook or at nasa.gov/sunearth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What encouraging words would you say to girls and women with dreams and ambitions who live in oppressive environments?
Thanks everyone for your fantastic questions! Sorry I couldn’t answer all of them. I hope you have fun on Monday, Aug. 21st and share your photos and experiences with us! https://www.flickr.com/groups/nasa-eclipse2017/
Safe viewing and talk to you later! https://eclipse2017.nasa.gov/safety
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts