What's Inside SOFIA? High Flying Instruments

What's Inside SOFIA? High Flying Instruments

image

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Having an airborne observatory provides many benefits.

image

It flies at 38,000-45,000 feet – above 99% of the water vapor in Earth’s atmosphere that blocks infrared light from reaching the ground! 

image

It is also mobile! We can fly to the best vantage point for viewing the cosmos. We go to Christchurch, New Zealand, nearly every year to study objects best observed from the Southern Hemisphere. And last year we went to Daytona Beach, FL, to study the atmosphere of Neptune’s moon Triton while flying over the Atlantic Ocean.

image

SOFIA’s telescope has a large primary mirror – about the same size as the Hubble Space Telescope’s mirror. Large telescopes let us gather a lot of light to make high-resolution images!

image

But unlike a space-based observatory, SOFIA returns to our base every morning.

image

Which means that we can change the instruments we use to analyze the light from the telescope to make many different types of scientific observations. We currently have seven instruments, and new ones are now being developed to incorporate new technologies.

So what is inside SOFIA? The existing instruments include:

image

Infrared cameras that can peer inside celestial clouds of dust and gas to see stars forming inside. They can also study molecules in a nebula that may offer clues to the building blocks of life…

image

…A polarimeter, a device that measures the alignment of incoming light waves, that we use to study magnetic fields. The left image reveals that hot dust in the starburst galaxy M82 is magnetically aligned with the gas flowing out of it, shown in blue on the right image from our Chandra X-ray Observatory. This can help us understand how magnetic fields affect how stars form.

image

…A tracking camera that we used to study New Horizon’s post-Pluto flyby target and found that it may have its own moon…

image

…A spectrograph that spreads light into its component colors. We’re using one to search for signs of water plumes on Jupiter’s icy moon Europa and to search for signs of water on Venus to learn about how it lost its oceans…

image

…An instrument that studies high energy terahertz radiation with 14 detectors. It’s so efficient that we made this map of Orion’s Horsehead Nebula in only four hours! The map is made of 100 separate views of the nebula, each mapping carbon atoms at different velocities.

image

…And we have an instrument under construction that will soon let us study how water vapor, ice and oxygen combine at different times during planet formation, to better understand how these elements combine with dust to form a mass that can become a planet.

image

Our airborne telescope has already revealed so much about the universe around us! Now we’re looking for the next idea to help us use SOFIA in even more new ways. 

Discover more about our SOFIA flying observatory HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

1 year ago

Do you guys (everyone at mission control) have inside jokes?

What is the best about being mission control?

As someone who's about to go to college to hopefully be astronaut if everything goes to plan. What is some good advice you wish someone told you?


Tags
1 year ago

Save the Date: 2024 Total Solar Eclipse

On April 8, 2024, a total solar eclipse will travel through Mexico, cross the United States from Texas to Maine, and exit North America along Canada’s Atlantic coast. A total solar eclipse occurs when the Moon passes between the Sun and the Earth, completely blocking the face of the Sun. The sky will darken as if it were dawn or dusk.

Weather permitting, people throughout most of North and Central America, including all of the contiguous United States, will be able to view at least a partial solar eclipse. A partial solar eclipse is when the Moon only covers part of the Sun. People in Hawaii and parts of Alaska will also experience a partial solar eclipse. Click here to learn more about when and where the solar eclipse will be visible: go.nasa.gov/Eclipse2024Map

Not in the path of the eclipse? Join us online to watch the eclipse with NASA. Set a reminder to watch live: https://go.nasa.gov/3V2CQML

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

Our Favorite Valentines Throughout the Universe

Today is Valentine’s Day. What better way to express that you love someone than with an intergalactic love gram? Check out some of our favorites and send them to all of your cosmic companions:

Your love is galactic

image

The Hubble Space Telescope revolutionized nearly all areas of astronomical research — and captured some truly lovely images. Here, a pair of intersecting galaxies swirl into the shape of a rose as a result of gravitational tidal pull. What type of roses are you getting for your love — red or galactic?

I think you’re n{ice}

image

IceBridge is the largest airborne survey of Earth’s polar ice ever flown. It captures 3-D views of Arctic and Antarctic ice sheets, ice shelves and sea ice. This lovely heart-shaped glacier feature was discovered in northwest Greenland during an IceBridge flight in 2017. Which of your lover’s features would you say are the coolest?

You’re absolutely magnetic

image

Even though we can't see them, magnetic fields are all around us. One of the solar system’s largest magnetospheres belongs to Jupiter. Right now, our Juno spacecraft is providing scientists with their first glimpses of this unseen force. Is your attraction to your loved one magnetic?

You’re MARS-velous

image

This heart-shaped feature on the Martian landscape was captured by our Mars Reconnaissance Orbiter. It was created by a small impact crater that blew darker material on the surface away. What impact has your loved one had on you?

I <3 you

image

From three billion miles away, Pluto sent a “love note” back to Earth, via our New Horizons spacecraft. This stunning image of Pluto's "heart" shows one of the world's most dominant features, estimated to be 1,000 miles (1,600 km) across at its widest point. Will you pass this love note on to someone special in your life?

Light of my life

image

Our Solar Dynamics Observatory keeps an eye on our closest star that brings energy to you and your love. The observatory helps us understand where the Sun's energy comes from, how the inside of the Sun works, how energy is stored and released in the Sun's atmosphere and much more. Who would you say is your ray of sunshine?

Do any of these cosmic phenomena remind you of someone in your universe? Download these cards here to send to all the stars in your sky.

Want something from the Red Planet to match your bouquet of red roses? Here is our collection of Martian Valentines.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 months ago

Student Experiments Soar!

Have you ever wondered what it takes to get a technology ready for space? The NASA TechRise Student Challenge gives middle and high school students a chance to do just that – team up with their classmates to design an original science or technology project and bring that idea to life as a payload on a suborbital vehicle.

Since March 2021, with the help of teachers and technical advisors, students across the country have dreamed up experiments with the potential to impact space exploration and collect data about our planet.

So far, more than 180 TechRise experiments have flown on suborbital vehicles that expose them to the conditions of space. Flight testing is a big step along the path of space technology development and scientific discovery.

The 2023-2024 TechRise Challenge flight tests took place this summer, with 60 student teams selected to fly their experiments on one of two commercial suborbital flight platforms: a high-altitude balloon operated by World View, or the Xodiac rocket-powered lander operated by Astrobotic. Xodiac flew over the company’s Lunar Surface Proving Ground — a test field designed to simulate the Moon’s surface — in Mojave, California, while World View’s high-altitude balloon launched out of Page, Arizona.

A clear, inflated high-altitude balloon with the sun shining brightly through it sits on an asphalt surface with mountains in the background. A vehicle sits to its left and a worker stands to its right.
A rocket hovers over a mottled gray simulated moon landscape then the image shifts to an aerial view from the rocket base showing landscape from above.

Here are four innovative TechRise experiments built by students and tested aboard NASA-supported flights this summer:

A high school student dressed in a blue jacket, wearing glasses and brightly colored hair clips holds a soldering iron and leans intently over an experiment.

1. Oobleck Reaches the Skies

Oobleck, which gets its name from Dr. Seuss, is a mixture of cornstarch and water that behaves as both a liquid and a solid. Inspired by in-class science experiments, high school students at Colegio Otoqui in Bayomón, Puerto Rico, tested how Oobleck’s properties at 80,000 feet aboard a high-altitude balloon are different from those on Earth’s surface. Using sensors and the organic elements to create Oobleck, students aimed to collect data on the fluid under different conditions to determine if it could be used as a system for impact absorption.

Middle school student in a red sweatshirt solders a circuit board to a small red square platform.

2. Terrestrial Magnetic Field

Middle school students at Phillips Academy International Baccalaureate School in Birmingham, Alabama, tested the Earth’s magnetic field strength during the ascent, float, and descent of the high-altitude balloon. The team hypothesized the magnetic field strength decreases as the distance from Earth’s surface increases.

Teacher points to circuit board that a middle school student is soldering.

3. Rocket Lander Flame Experiment

To understand the impact of dust, rocks, and other materials kicked up by a rocket plume when landing on the Moon, middle school students at Cliff Valley School in Atlanta, Georgia, tested the vibrations of the Xodiac rocket-powered lander using CO2 and vibration sensors. The team also used infrared (thermal) and visual light cameras to attempt to detect the hazards produced by the rocket plume on the simulated lunar surface, which is important to ensure a safe landing.

Two high school students lean in closely with heads together, practicing their soldering skills.

4. Rocket Navigation

Middle and high school students at Tiospaye Topa School in LaPlant, South Dakota, developed an experiment to track motion data with the help of a GPS tracker and magnetic radar. Using data from the rocket-powered lander flight, the team will create a map of the flight path as well as the magnetic field of the terrain. The students plan to use their map to explore developing their own rocket navigation system.

The 2024-2025 TechRise Challenge is now accepting proposals for technology and science to be tested on a high-altitude balloon! Not only does TechRise offer hands-on experience in a live testing scenario, but it also provides an opportunity to learn about teamwork, project management, and other real-world skills.

“The TechRise Challenge was a truly remarkable journey for our team,” said Roshni Ismail, the team lead and educator at Cliff Valley School. “Watching them transform through the discovery of new skills, problem-solving together while being driven by the chance of flying their creation on a [rocket-powered lander] with NASA has been exhilarating. They challenged themselves to learn through trial and error and worked long hours to overcome every obstacle. We are very grateful for this opportunity.”

Are you ready to bring your experiment design to the launchpad? If you are a sixth to 12th grade student, you can make a team under the guidance of an educator and submit your experiment ideas by November 1. Get ready to create!

A person dressed in white tee-shirt and black pants uses a screwdriver to attach a rectangular cube-shaped container that encases an experiment to a large circular platform that houses multiple experiments.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

What is an upcoming project/mission you're most excited for?

It is likely that I’ll be assigned a mission to the International Space Station (ISS) within the next few years.  We’ve had a continuous presence on the Space Station for 17 years now, along with our international partners (Russian Space Agency, European Space Agency, Japanese Space Agency, and Canadian Space Agency).  Missions on the ISS typically last 6 months.  I’m incredibly excited to contribute to the impressive array of scientific experiments that we are conducting every day on ISS (I am a scientist after all!), and very much look forward to the potential of going for a spacewalk and gaining that perspective of gazing down on the fragile blue ball that is our home from above.  Beyond that, being part of test missions on the Orion spacecraft (currently under construction at NASA!) would be an extraordinary opportunity.  The current NASA plan is to send astronauts in Orion in a mission that will go 40,000 miles beyond the Moon in the early 2020s, reaching a distance further than that ever travelled by humans.  I’d certainly be game for that! 


Tags
8 years ago

Flying to New Heights With the Magnetospheric Multiscale Mission

A mission studying Earth’s magnetic field by flying four identical spacecraft is headed into new territory. 

image

The Magnetospheric Multiscale mission, or MMS, has been studying the magnetic field on the side of Earth facing the sun, the day side – but now we’re focusing on something else. On February 9, MMS started the three-month-long process of shifting to a new orbit. 

image

One key thing MMS studies is magnetic reconnection – a process that occurs when magnetic fields collide and re-align explosively into new positions. The new orbit will allow MMS to study reconnection on the night side of the Earth, farther from the sun.

image

Magnetic reconnection on the night side of Earth is thought to be responsible for causing the northern and southern lights.  

image

To study the interesting regions of Earth’s magnetic field on the night side, the four MMS spacecraft are being boosted into an orbit that takes them farther from Earth than ever before. Once it reaches its final orbit, MMS will shatter its previous Guinness World Record for highest altitude fix of a GPS.

To save on fuel, the orbit is slowly adjusted over many weeks. The boost to take each spacecraft to its final orbit will happen during the first week of April.

image

On April 19, each spacecraft will be boosted again to raise its closest approach to Earth, called perigee. Without this step, the spacecraft would be way too close for comfort -- and would actually reenter Earth’s atmosphere next winter! 

image

The four MMS spacecraft usually fly really close together – only four miles between them – in a special pyramid formation called a tetrahedral, which allows us to examine the magnetic environment in three dimensions.

image

But during orbit adjustments, the pyramid shape is broken up to make sure the spacecraft have plenty of room to maneuver. Once MMS reaches its new orbit in May, the spacecraft will be realigned into their tetrahedral formation and ready to do more 3D magnetic science.

image

Learn more about MMS and find out what it’s like to fly a spacecraft.

3 years ago
Spotted: Signs Of A Planet About 28 Million Light-years Away 🔎 🪐

Spotted: signs of a planet about 28 million light-years away 🔎 🪐

For the first time, astronomers may have detected an exoplanet candidate outside of the Milky Way galaxy. Exoplanets are defined as planets outside of our Solar System. All other known exoplanets and exoplanet candidates have been found in the Milky Way, almost all of them less than about 3,000 light-years from Earth.

This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star's light and produces a characteristic dip. Researchers used our Chandra X-ray Observatory to search for dips in the brightness of X-rays received from X-ray bright binaries in the spiral galaxy Messier 51, also called the Whirlpool Galaxy (pictured here). These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. They estimate the exoplanet candidate would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.

This composite image of the Whirlpool Galaxy was made with X-ray data from Chandra and optical light from our Hubble Space Telescope.

Credit: X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

OMG! Ice is Melting from Below

image

Oceans Melting Greenland (OMG) scientists are heading into the field this week to better understand how seawater is melting Greenland’s ice from below. (Yes, those black specks are people next to an iceberg.) While NASA is studying ocean properties (things like temperature, salinity and currents), other researchers are eager to incorporate our data into their work. In fact, University of Washington scientists are using OMG data to study narwhals – smallish whales with long tusks – otherwise known as the “unicorns of the sea.”

 Our researchers are also in the field right now studying how Alaska’s ice is changing. Operation IceBridge, our longest airborne campaign, is using science instruments on airplanes to study and measure the ice below.

What happens in the Arctic doesn’t stay in the Arctic (or the Antarctic, really). In a warming world, the greatest changes are seen in the coldest places. Earth’s cryosphere – its ice sheets, sea ice, glaciers, permafrost and snow cover – acts as our planet’s thermostat and deep freeze, regulating temperatures and storing most of our freshwater. Next month, we’re launching ICESat-2, our latest satellite to study Earth’s ice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Testing Time for the SLS Engine Section

In schools across the country, many students just finished final exams. Now, part of the world’s most powerful rocket, the Space Launch System (SLS), is about to feel the pressure of testing time. The first SLS engine section has been moving slowly upriver from Michoud Assembly Facility near New Orleans, but once the barge Pegasus docks at our Marshall Space Flight Center in Huntsville, Alabama, the real strength test for the engine section will get started.

image

The engine section is the first of four of the major parts of the core stage that are being tested to make sure SLS is ready for the challenges of spaceflight.

image

The engine section is located at the bottom of the rocket. It has a couple of important jobs. It holds the four RS-25 liquid propellant engines, and it serves as one of two attach points for each of the twin solid propellant boosters. This first engine section will be used only for ground testing. 

image

Of all the major parts of the rocket, the engine section gets perhaps the roughest workout during launch. Millions of pounds of core stage are pushing down, while the engines are pushing up with millions of pounds of thrust, and the boosters are tugging at it from both sides. That’s a lot of stress. Maybe that’s why there’s a saying in the rocket business: “Test like you fly, and fly like you test.”

image

After it was welded at Michoud, technicians installed the thrust structure, engine supports and other internal equipment and loaded it aboard the Pegasus for shipment to Marshall.

image

Once used to transport space shuttle external tanks, Pegasus was modified for the longer SLS core stage by removing 115 feet out of the middle of the barge and added a new 165-foot section with a reinforced main deck. Now as long as a football field, Pegasus – with the help of two tugboats – will transport core stage test articles to Marshall Space Flight Center as well as completed core stages to Stennis Space Center in Mississippi for test firing and then to Kennedy Space Center for launch.

Testing Time For The SLS Engine Section

The test article has no engines, cabling, or computers, but it will replicate all the structures that will undergo the extreme physical forces of launch. The test article is more than 30 feet tall, and weighs about 70,000 pounds. About 3,200 sensors attached to the test article will measure the stress during 59 separate tests. Flight-like physical forces will be applied through simulators and adaptors standing in for the liquid hydrogen tank and RS-25 engines.

image

The test fixture that will surround and secure the engine section weighs about 1.5 million pounds and is taller than a 5-story building. Fifty-five big pistons called “load lines” will impart more than 4.5 million pounds of force vertically and more than 428,000 pounds from the side.

image

The engineers and their computer design tools say the engine section can handle the stress.  It’s the test team’s job prove that it can.

For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/


Tags
1 year ago
: Data visualization of global temperature anomalies progressing from 1880 to 2023 mapped onto Earth. The map uses color to represent anomalies, ranging from blue for below average temperatures, white for temperatures at baseline, and yellows ranging through oranges and reds to represent higher and higher than average temperatures. At the beginning of the time series, the map is primarily blues and whites, with a few spots of yellow, indicating that temperatures overall are below the baseline. As time progresses, the colors shift and move, with less and less blue and white and more and more yellow, then orange, and red. By 2023, the map is mostly yellow with lots of orange and red. The Arctic region, Europe, Asia, North America, central South America, and the Antarctic peninsula are all dark red, indicating the highest temperature anomalies. Credit: NASA’s Scientific Visualization Studio

Six Answers to Questions You’re Too Embarrassed to Ask about the Hottest Year on Record

You may have seen the news that 2023 was the hottest year in NASA’s record, continuing a trend of warming global temperatures. But have you ever wondered what in the world that actually means and how we know?

We talked to some of our climate scientists to get clarity on what a temperature record is, what happened in 2023, and what we can expect to happen in the future… so you don’t have to!

Graph of carbon dioxide emissions from just before 1960 to present day. The X-axis shows years, with each decade listed. The Y-axis shows parts per million of carbon dioxide in the atmosphere. It starts at 300 and runs to 420 ppm. The line on the graph is a fairly straightforward upward trajectory, starting below 320 ppm in 1960 and running to over 420 ppm in 2023. The line on the graph does spike up and down within each year, showcasing the seasonal cycle of carbon dioxide uptake. However, the spikes are extremely minor compared to the upward trajectory. Credit: NOAA

1. Why was 2023 the warmest year on record?

The short answer: Human activities. The release of greenhouse gases like carbon dioxide and methane into the atmosphere trap more heat near Earth’s surface, raising global temperatures. This is responsible for the decades-long warming trend we’re living through.

But this year’s record wasn’t just because of human activities. The last few years, we’ve been experiencing the cooler phase of a natural pattern of Pacific Ocean temperatures called the El Niño Southern Oscillation (ENSO). This phase, known as La Niña, tends to cool temperatures slightly around the world. In mid-2023, we started to shift into the warmer phase, known as El Niño. The shift ENSO brought, combined with overall human-driven warming and other factors we’re continuing to study, pushed 2023 to a new record high temperature.

A climate spiral animation. The chart is circular with the year in the center and months of the year around the outside. There are three concentric circles labeled with measures from negative 2 degrees Fahrenheit to 2 degrees Fahrenheit, with the outer ring being the largest value. As the years count up, a line spirals through the months of the year and around the circle. The line starts with blue hues when temperatures are below average and changes to red and orange hues when temperatures are above average. As the spiral progresses, the lines form a deformed circle that becomes larger and more red, indicating Earth’s warming up to just above 2 degrees Fahrenheit above average. Credit: NASA’s Scientific Visualization Studio

2. So will every year be a record now?

Almost certainly not. Although the overall trend in annual temperatures is warmer, there’s some year-to-year variation, like ENSO we mentioned above.

Think about Texas and Minnesota. On the whole, Texas is warmer than Minnesota. But some days, stormy weather could bring cooler temperatures to Texas while Minnesota is suffering through a local heat wave. On those days, the weather in Minnesota could be warmer than the weather in Texas. That doesn’t mean Minnesota is warmer than Texas overall; we’re just experiencing a little short-term variation.

Something similar happens with global annual temperatures. The globe will naturally shift back to La Niña in the next few years, bringing a slight cooling effect. Because of human carbon emissions, current La Niña years will be warmer than La Niña years were in the past, but they’ll likely still be cooler than current El Niño years.

Visualization of Earth, rotating, speckled with tiny dots in various colors, representing surface temperature measurements taken over the course of a year. Most of the land surfaces are heavily covered in red dots, which represent land measurements. Yellow dots create streaks across the ocean, representing measurements taken by ships. Pink dots irregularly scattered across the ocean represent measurements from floating ocean buoys. Orange dots similar across the ocean represent measurements from moored buoys. Green dots, primarily along coasts, represent tidal gauge measurements. Finally, a handful of blue dots represent all other measurement locations. Credit: NASA’s Scientific Visualization Studio

3. What do we mean by “on record”?

Technically, NASA’s global temperature record starts in 1880. NASA didn’t exist back then, but temperature data were being collected by sailing ships, weather stations, and scientists in enough places around the world to reconstruct a global average temperature. We use those data and our modern techniques to calculate the average.

We start in 1880, because that’s when thermometers and other instruments became technologically advanced and widespread enough to reliably measure and calculate a global average. Today, we make those calculations based on millions of measurements taken from weather stations and Antarctic research stations on land, and ships and ocean buoys at sea. So, we can confidently say 2023 is the warmest year in the last century and a half.

A line graph of temperatures in the Northern Hemisphere Extratropics, Reconstructed Summer, which is May to August, Temperature. The Y-axis is Temperature Anomaly, running from -2 degrees Celsius to 2 degrees Celsius. The X-axis is Years, from 600 to 2023. A jagged black line runs just around the 0 degree Celsius line, with each year slightly higher or lower than the previous, but none jumping above or below 1 and -1 degrees, until just before the year 2000. Around the year 1900, the jagged line begins to climb upwards, reaching to above 1 degree Celsius. At around the time the temperature starts to climb, a red line, indicating NASA’s temperature record, maps very closely to the black line. At the very end, the red line jumps even higher than the black line, reaching almost to 2 degrees Celsius. Credit: NASA/Peter Jacobs using data from N-TREND / Rob Wilson at University of St. Andrews

However, we actually have a really good idea of what global climate looked like for tens of thousands of years before 1880, relying on other, indirect ways of measuring temperature. We can look at tree rings or cores drilled from ice sheets to reconstruct Earth’s more ancient climate. These measurements affirm that current warming on Earth is happening at an unprecedented speed.

4. Why does a space agency keep a record of Earth’s temperature?

It’s literally our job! When NASA was formed in 1958, our original charter called for “the expansion of human knowledge of phenomena in the atmosphere and space.” Our very first space missions uncovered surprises about Earth, and we’ve been using the vantage point of space to study our home planet ever since. Right now, we have a fleet of more than 20 spacecraft monitoring Earth and its systems.

Why we created our specific surface temperature record – known as GISTEMP – actually starts about 25 million miles away on the planet Venus. In the 1960s and 70s, researchers discovered that a thick atmosphere of clouds and carbon dioxide was responsible for Venus’ scorchingly hot temperatures.

The northern hemisphere of Venus, seen by the Magellan spacecraft. Venus is a burnt yellowish circle against the blackness of space. The planet’s surface has darker and yellow orange mottling and darker crater markings. Credit: NASA/JPL

Dr. James Hansen was a scientist at the Goddard Institute for Space Studies in New York, studying Venus. He realized that the greenhouse effect cooking Venus’ surface could happen on Earth, too, especially as human activities were pumping carbon dioxide into our atmosphere.

He started creating computer models to see what would happen to Earth’s climate as more carbon dioxide entered the atmosphere. As he did, he needed a way to check his models – a record of temperatures at Earth’s surface over time, to see if the planet was indeed warming along with increased atmospheric carbon. It was, and is, and NASA’s temperature record was born.

5. If last year was record hot, why wasn’t it very hot where I live?

The temperature record is a global average, so not everywhere on Earth experienced record heat. Local differences in weather patterns can influence individual locations to be hotter or colder than the globe overall, but when we average it out, 2023 was the hottest year.

Just because you didn’t feel record heat this year, doesn’t mean you didn’t experience the effects of a warming climate. 2023 saw a busy Atlantic hurricane season, low Arctic sea ice, raging wildfires in Canada, heat waves in the U.S. and Australia, and more.

Satellite image of smoke over the northeastern United States. The smoke is a light gray, cottony blanket creating an irregular shape over the center of the image. Behind it, the land surface is light browns and greens. Credit: NASA’s Earth Observatory

And these effects don’t stay in one place. For example, unusually hot and intense fires in Canada sent smoke swirling across the entire North American continent, triggering some of the worst air quality in decades in many American cities. Melting ice at Earth’s poles drives rising sea levels on coasts thousands of miles away.

Zoom in from a globe of Earth, showing warming temperatures in yellows, oranges, and reds. The zoom pushes in on the Arctic, which is primarily dark red, indicating the largest temperature anomalies throughout the region. Credit: NASA’s Scientific Visualization Studio/Katy Mersmann

6. Speaking of which, why is the Arctic – one of the coldest places on Earth – red on this temperature map?

Our global temperature record doesn’t actually track absolute temperatures. Instead, we track temperature anomalies, which are basically just deviations from the norm. Our baseline is an average of the temperatures from 1951-1980, and we compare how much Earth’s temperature has changed since then. 

Why focus on anomalies, rather than absolutes? Let’s say you want to track if apples these days are generally larger, smaller, or the same size as they were 20 years ago. In other words, you want to track the change over time.

Apples grown in Florida are generally larger than apples grown in Alaska. Like, in real life, how Floridian temperatures are generally much higher than Alaskan temperatures. So how do you track the change in apple sizes from apples grown all over the world while still accounting for their different baseline weights? 

By focusing on the difference within each area rather than the absolute weights. So in our map, the Arctic isn’t red because it’s hotter than Bermuda. It’s red because it’s gotten relatively much warmer than Bermuda has in the same time frame.

Want to learn more about climate change? Dig into the data at climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • velovelo
    velovelo liked this · 4 years ago
  • hardfarmcroissantskeleton
    hardfarmcroissantskeleton liked this · 4 years ago
  • rodeolex
    rodeolex liked this · 4 years ago
  • murciegalito
    murciegalito liked this · 4 years ago
  • craymor1
    craymor1 reblogged this · 5 years ago
  • craymor1
    craymor1 liked this · 5 years ago
  • brieflyinstantruins
    brieflyinstantruins liked this · 5 years ago
  • oblivious-chaos
    oblivious-chaos reblogged this · 5 years ago
  • docfotcho
    docfotcho liked this · 5 years ago
  • ca1iban
    ca1iban liked this · 5 years ago
  • 3rdlegend
    3rdlegend liked this · 5 years ago
  • 89845aaa
    89845aaa liked this · 5 years ago
  • chinoagogo
    chinoagogo liked this · 5 years ago
  • rostenkowsky
    rostenkowsky liked this · 5 years ago
  • innertracklist
    innertracklist liked this · 5 years ago
  • paprikazz
    paprikazz liked this · 5 years ago
  • misfitwashere
    misfitwashere liked this · 5 years ago
  • 7thgenscot
    7thgenscot liked this · 5 years ago
  • truth-of-words
    truth-of-words liked this · 5 years ago
  • thismustbetheplace2be
    thismustbetheplace2be reblogged this · 5 years ago
  • mevoyalwerto
    mevoyalwerto reblogged this · 5 years ago
  • mevoyalwerto
    mevoyalwerto liked this · 5 years ago
  • repalakiedomer
    repalakiedomer liked this · 5 years ago
  • mechanicalreaper88
    mechanicalreaper88 liked this · 5 years ago
  • wildlandman
    wildlandman liked this · 5 years ago
  • traveler733
    traveler733 reblogged this · 5 years ago
  • grapnel
    grapnel liked this · 5 years ago
  • kogenzen
    kogenzen reblogged this · 5 years ago
  • cadoretjerome
    cadoretjerome liked this · 5 years ago
  • nelvaz25
    nelvaz25 liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags