Six Answers To Questions You’re Too Embarrassed To Ask About The Hottest Year On Record

: Data visualization of global temperature anomalies progressing from 1880 to 2023 mapped onto Earth. The map uses color to represent anomalies, ranging from blue for below average temperatures, white for temperatures at baseline, and yellows ranging through oranges and reds to represent higher and higher than average temperatures. At the beginning of the time series, the map is primarily blues and whites, with a few spots of yellow, indicating that temperatures overall are below the baseline. As time progresses, the colors shift and move, with less and less blue and white and more and more yellow, then orange, and red. By 2023, the map is mostly yellow with lots of orange and red. The Arctic region, Europe, Asia, North America, central South America, and the Antarctic peninsula are all dark red, indicating the highest temperature anomalies. Credit: NASA’s Scientific Visualization Studio

Six Answers to Questions You’re Too Embarrassed to Ask about the Hottest Year on Record

You may have seen the news that 2023 was the hottest year in NASA’s record, continuing a trend of warming global temperatures. But have you ever wondered what in the world that actually means and how we know?

We talked to some of our climate scientists to get clarity on what a temperature record is, what happened in 2023, and what we can expect to happen in the future… so you don’t have to!

Graph of carbon dioxide emissions from just before 1960 to present day. The X-axis shows years, with each decade listed. The Y-axis shows parts per million of carbon dioxide in the atmosphere. It starts at 300 and runs to 420 ppm. The line on the graph is a fairly straightforward upward trajectory, starting below 320 ppm in 1960 and running to over 420 ppm in 2023. The line on the graph does spike up and down within each year, showcasing the seasonal cycle of carbon dioxide uptake. However, the spikes are extremely minor compared to the upward trajectory. Credit: NOAA

1. Why was 2023 the warmest year on record?

The short answer: Human activities. The release of greenhouse gases like carbon dioxide and methane into the atmosphere trap more heat near Earth’s surface, raising global temperatures. This is responsible for the decades-long warming trend we’re living through.

But this year’s record wasn’t just because of human activities. The last few years, we’ve been experiencing the cooler phase of a natural pattern of Pacific Ocean temperatures called the El Niño Southern Oscillation (ENSO). This phase, known as La Niña, tends to cool temperatures slightly around the world. In mid-2023, we started to shift into the warmer phase, known as El Niño. The shift ENSO brought, combined with overall human-driven warming and other factors we’re continuing to study, pushed 2023 to a new record high temperature.

A climate spiral animation. The chart is circular with the year in the center and months of the year around the outside. There are three concentric circles labeled with measures from negative 2 degrees Fahrenheit to 2 degrees Fahrenheit, with the outer ring being the largest value. As the years count up, a line spirals through the months of the year and around the circle. The line starts with blue hues when temperatures are below average and changes to red and orange hues when temperatures are above average. As the spiral progresses, the lines form a deformed circle that becomes larger and more red, indicating Earth’s warming up to just above 2 degrees Fahrenheit above average. Credit: NASA’s Scientific Visualization Studio

2. So will every year be a record now?

Almost certainly not. Although the overall trend in annual temperatures is warmer, there’s some year-to-year variation, like ENSO we mentioned above.

Think about Texas and Minnesota. On the whole, Texas is warmer than Minnesota. But some days, stormy weather could bring cooler temperatures to Texas while Minnesota is suffering through a local heat wave. On those days, the weather in Minnesota could be warmer than the weather in Texas. That doesn’t mean Minnesota is warmer than Texas overall; we’re just experiencing a little short-term variation.

Something similar happens with global annual temperatures. The globe will naturally shift back to La Niña in the next few years, bringing a slight cooling effect. Because of human carbon emissions, current La Niña years will be warmer than La Niña years were in the past, but they’ll likely still be cooler than current El Niño years.

Visualization of Earth, rotating, speckled with tiny dots in various colors, representing surface temperature measurements taken over the course of a year. Most of the land surfaces are heavily covered in red dots, which represent land measurements. Yellow dots create streaks across the ocean, representing measurements taken by ships. Pink dots irregularly scattered across the ocean represent measurements from floating ocean buoys. Orange dots similar across the ocean represent measurements from moored buoys. Green dots, primarily along coasts, represent tidal gauge measurements. Finally, a handful of blue dots represent all other measurement locations. Credit: NASA’s Scientific Visualization Studio

3. What do we mean by “on record”?

Technically, NASA’s global temperature record starts in 1880. NASA didn’t exist back then, but temperature data were being collected by sailing ships, weather stations, and scientists in enough places around the world to reconstruct a global average temperature. We use those data and our modern techniques to calculate the average.

We start in 1880, because that’s when thermometers and other instruments became technologically advanced and widespread enough to reliably measure and calculate a global average. Today, we make those calculations based on millions of measurements taken from weather stations and Antarctic research stations on land, and ships and ocean buoys at sea. So, we can confidently say 2023 is the warmest year in the last century and a half.

A line graph of temperatures in the Northern Hemisphere Extratropics, Reconstructed Summer, which is May to August, Temperature. The Y-axis is Temperature Anomaly, running from -2 degrees Celsius to 2 degrees Celsius. The X-axis is Years, from 600 to 2023. A jagged black line runs just around the 0 degree Celsius line, with each year slightly higher or lower than the previous, but none jumping above or below 1 and -1 degrees, until just before the year 2000. Around the year 1900, the jagged line begins to climb upwards, reaching to above 1 degree Celsius. At around the time the temperature starts to climb, a red line, indicating NASA’s temperature record, maps very closely to the black line. At the very end, the red line jumps even higher than the black line, reaching almost to 2 degrees Celsius. Credit: NASA/Peter Jacobs using data from N-TREND / Rob Wilson at University of St. Andrews

However, we actually have a really good idea of what global climate looked like for tens of thousands of years before 1880, relying on other, indirect ways of measuring temperature. We can look at tree rings or cores drilled from ice sheets to reconstruct Earth’s more ancient climate. These measurements affirm that current warming on Earth is happening at an unprecedented speed.

4. Why does a space agency keep a record of Earth’s temperature?

It’s literally our job! When NASA was formed in 1958, our original charter called for “the expansion of human knowledge of phenomena in the atmosphere and space.” Our very first space missions uncovered surprises about Earth, and we’ve been using the vantage point of space to study our home planet ever since. Right now, we have a fleet of more than 20 spacecraft monitoring Earth and its systems.

Why we created our specific surface temperature record – known as GISTEMP – actually starts about 25 million miles away on the planet Venus. In the 1960s and 70s, researchers discovered that a thick atmosphere of clouds and carbon dioxide was responsible for Venus’ scorchingly hot temperatures.

The northern hemisphere of Venus, seen by the Magellan spacecraft. Venus is a burnt yellowish circle against the blackness of space. The planet’s surface has darker and yellow orange mottling and darker crater markings. Credit: NASA/JPL

Dr. James Hansen was a scientist at the Goddard Institute for Space Studies in New York, studying Venus. He realized that the greenhouse effect cooking Venus’ surface could happen on Earth, too, especially as human activities were pumping carbon dioxide into our atmosphere.

He started creating computer models to see what would happen to Earth’s climate as more carbon dioxide entered the atmosphere. As he did, he needed a way to check his models – a record of temperatures at Earth’s surface over time, to see if the planet was indeed warming along with increased atmospheric carbon. It was, and is, and NASA’s temperature record was born.

5. If last year was record hot, why wasn’t it very hot where I live?

The temperature record is a global average, so not everywhere on Earth experienced record heat. Local differences in weather patterns can influence individual locations to be hotter or colder than the globe overall, but when we average it out, 2023 was the hottest year.

Just because you didn’t feel record heat this year, doesn’t mean you didn’t experience the effects of a warming climate. 2023 saw a busy Atlantic hurricane season, low Arctic sea ice, raging wildfires in Canada, heat waves in the U.S. and Australia, and more.

Satellite image of smoke over the northeastern United States. The smoke is a light gray, cottony blanket creating an irregular shape over the center of the image. Behind it, the land surface is light browns and greens. Credit: NASA’s Earth Observatory

And these effects don’t stay in one place. For example, unusually hot and intense fires in Canada sent smoke swirling across the entire North American continent, triggering some of the worst air quality in decades in many American cities. Melting ice at Earth’s poles drives rising sea levels on coasts thousands of miles away.

Zoom in from a globe of Earth, showing warming temperatures in yellows, oranges, and reds. The zoom pushes in on the Arctic, which is primarily dark red, indicating the largest temperature anomalies throughout the region. Credit: NASA’s Scientific Visualization Studio/Katy Mersmann

6. Speaking of which, why is the Arctic – one of the coldest places on Earth – red on this temperature map?

Our global temperature record doesn’t actually track absolute temperatures. Instead, we track temperature anomalies, which are basically just deviations from the norm. Our baseline is an average of the temperatures from 1951-1980, and we compare how much Earth’s temperature has changed since then. 

Why focus on anomalies, rather than absolutes? Let’s say you want to track if apples these days are generally larger, smaller, or the same size as they were 20 years ago. In other words, you want to track the change over time.

Apples grown in Florida are generally larger than apples grown in Alaska. Like, in real life, how Floridian temperatures are generally much higher than Alaskan temperatures. So how do you track the change in apple sizes from apples grown all over the world while still accounting for their different baseline weights? 

By focusing on the difference within each area rather than the absolute weights. So in our map, the Arctic isn’t red because it’s hotter than Bermuda. It’s red because it’s gotten relatively much warmer than Bermuda has in the same time frame.

Want to learn more about climate change? Dig into the data at climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

6 years ago

Meet Our ICONic New Satellite

The boundary between Earth and space is complicated and constantly changing. Unlike the rest of the atmosphere, the upper atmosphere near the edge of space has a mix of both neutral particles similar to the air we breathe, as well as electrically charged particles called ions. Changes in this region are unpredictable, but they can affect satellites and garble signals, like GPS, that pass through this region. That’s why we’re launching ICON (the Ionospheric Connection Explorer) to get our first-ever comprehensive look at our interface to space.

image

About 60 miles above Earth’s surface, Earth’s atmosphere gives way to space. The change is gradual: The gases of the atmosphere get steadily thinner the higher you go. On the edge of space, the Sun’s radiation cooks some of those thin gases until they lose an electron (or two or three), creating a population of electrically charged particles swarming alongside the neutral particles. These charged particles make up the ionosphere.

image

Because the particles of the ionosphere are electrically charged, they respond uniquely to electric and magnetic fields. Dynamic conditions in space — including shifting fields and surges of charged particles, collectively called space weather — induce shifts in the ionosphere that can have far-reaching effects. The ionosphere is where space weather manifests on Earth, and it’s inextricably connected with the neutral upper atmosphere — so distortions in one part affect the other.  

image

Changes in the ionosphere and upper atmosphere — including sudden shifts in composition, density, temperature, and conductivity — can affect satellites, building up electric charge that has the potential to disrupt instruments, and garble signals like those used by GPS satellites. Predicting these variances is hard, because the causes are so complex: They’re driven not only by space weather — usually a product of solar activity — but also by regular weather down near Earth’s surface.  

image

Differences in pressure caused by events like hurricanes, or even something as simple as a sustained wind over a mountain range, can ripple upwards until they reach this region and trigger fluctuations. Weather’s influence on the upper atmosphere was only discovered in the past ten years or so — and ICON is the first mission designed specifically to look at that interaction.

image

ICON carries four types of instruments to study the ionosphere and upper atmosphere. Three of them rely on taking far-away pictures of something called airglow, a faint, global glow produced by reactive compounds in the upper atmosphere. The fourth type collects and analyzes particles directly.

MIGHTI (the Michelson Interferometer for Global High-resolution Thermospheric Imaging) uses Doppler shift — the same effect that makes a siren change pitch as an ambulance passes you — to precisely track the speed and direction of upper-atmosphere winds.

FUV (the Far Ultraviolet instrument) measures airglow produced by certain types of oxygen and nitrogen molecules on Earth’s day side, as well as oxygen ions on Earth’s night side.

EUV (the Extreme Ultraviolet instrument) measures shorter wavelengths of light than FUV. Airglow measured by EUV is produced by oxygen ions on Earth’s day side, which make up the lion’s share of Earth’s daytime ionosphere.

The two identical IVMs (Ion Velocity Meters) make very precise measurements of the angle at which ionized gas enters the instruments, helping us build up a picture of how this ionized gas around the spacecraft is moving.

image

We’re launching ICON on June 14 Eastern Time on an Orbital ATK Pegasus XL rocket from Kwajalein Atoll in the Marshall Islands, which will deploy from Orbital’s L-1011 Stargazer aircraft. NASA TV will cover the launch — stay tuned to nasa.gov/live for updates and follow the mission on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
8 years ago

How can people in the US help the space program?

I used to think STEM was a buzzword, but actually in the United States we do need more students entering into the Science, Technology, Engineering, and Math fields. By doing this, they can help develop technologies to help get humans further and further into deep space and discover new things about the universe. 


Tags
8 years ago

What specific area of space research most excites you? Could be something being explored currently, or something you would like to see work done on in the future.

My twin sister worked on genetics in graduate school, and she continues to research ideas in genetics. She comes up with a lot of great ideas for what we can study in space, especially now since genetics is a focus on the space station. I’m looking forward to continuing with the genetics experiments and seeing what we learn.


Tags
6 years ago

These 9 Companies Could Help Us Send the Next Robotic Landers to the Moon

We sent the first humans to land on the Moon in 1969. Since then, only of 12 men have stepped foot on the lunar surface – but we left robotic explorers behind to continue gathering science data. And now, we’re preparing to return. Establishing a sustained presence on and near the Moon will help us learn to live off of our home planet and prepare for travel to Mars.

image

To help establish ourselves on and near the Moon, we are working with a few select American companies. We will buy space on commercial robotic landers, along with other customers, to deliver our payloads to the lunar surface. We’re even developing lunar instruments and tools that will fly on missions as early as 2019!

image

Through partnerships with American companies, we are leading a flexible and sustainable approach to deep space missions. These early commercial delivery missions will also help inform new space systems we build to send humans to the Moon in the next decade. Involving American companies and stimulating the space market with these new opportunities to send science instruments and new technologies to deep space will be similar to how we use companies like Northrop Grumman and SpaceX to send cargo to the International Space Station now. These selected companies will provide a rocket and cargo space on their robotic landers for us (and others!) to send science and technology to our nearest neighbor.

So who are these companies that will get to ferry science instruments and new technologies to the Moon?

Here’s a digital “catalogue” of the organizations and their spacecraft that will be available for lunar services over the next decade:

Astrobotic Technology, Inc.

Pittsburg, PA

image

Deep Space Systems

Littleton, CO

image

Firefly Aerospace, Inc.

Cedar Park, TX

image

Intuitive Machines, LLC

Houston, TX

image

Lockheed Martin Space

Littleton, CO

image

Masten Space Systems, Inc.

Mojave, CA

image

Moon Express, Inc.

Cape Canaveral, FL

image

Orbit Beyond, Inc.

Edison, NJ

image

Draper, Inc.

Cambridge, MA

image

We are thrilled to be working with these companies to enable us to investigate the Moon in new ways. In order to expand humanity’s presence beyond Earth, we need to return to the Moon before we go to Mars.

The Moon helps us to learn how to live and work on another planetary body while being only three days away from home – instead of several months. The Moon also holds enormous potential for testing new technologies, like prospecting for water ice and turning it into drinking water, oxygen and rocket fuel. Plus, there’s so much science to be done!

image

The Moon can help us understand the early history of the solar system, how planets migrated to their current formation and much more. Understanding how the Earth-Moon system formed is difficult because those ancient rocks no longer exist here on Earth. They have been recycled by plate tectonics, but the Moon still has rocks that date back to the time of its formation! It’s like traveling to a cosmic time machine!

Join us on this exciting journey as we expand humanity’s presence beyond Earth.

Learn more about the Moon and all the surprises it may hold: https://moon.nasa.gov

Find out more about today’s announcement HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Take a dive between Saturn and its rings to see what our Cassini spacecraft saw during its first daring plunge on April 26! 

As Cassini made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. The video begins with a view of the vortex at Saturn's north pole, then heads past the outer boundary of the planet's hexagon-shaped jet stream and continues further southward. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Galactic Ghouls and Stellar Screams

A quiet, starry night sky might not seem like a very eerie spectacle, but space can be a creepy place! Monsters lurk in the shadowy depths of the universe, sometimes hidden in plain sight. Many of them are invisible to our eyes, so we have to use special telescopes to see them. Read on to discover some of these strange cosmic beasts, but beware — sometimes fact is scarier than fiction.

Monster Black Holes ⚫

image

You know those nightmares where no matter how fast you try to run you never seem to get anywhere? Black holes are a sinister possible version of that dream — especially because they’re real! If you get too close to a black hole, there is no possibility of escape.

Just last year our Fermi Gamma-ray Space Telescope traced an otherworldly ghost particle back to one of these monster black holes, providing additional insight into the many signals we’re picking up from some of the most feared creatures in the cosmic deep.

But it gets worse. Our Hubble Space Telescope revealed that these things are hidden in the hearts of nearly every galaxy in the universe. That means supermassive black holes lurk in the shadows of the night sky in every direction you look!

A Hazy Specter 👻

image

This fiendish specter lives in the center of the Milky Way, haunting our galaxy’s supermassive black hole. But it’s not as scary as it looks! Our SOFIA observatory captured streamlines tracing a magnetic field that appears to be luring most of the material quietly into orbit around the black hole. In other galaxies, magnetic fields seem to be feeding material into hungry black holes — beware! Magnetic fields might be the answer to why some black holes are starving while others are feasting.

Bats in the Belfry 🦇

image

The universe has bats in the attic! Hubble spotted the shadow of a giant cosmic bat in the Serpens Nebula. Newborn stars like the one at the center of the bat, called HBC 672, are surrounded by disks of material, which are hard to study directly. The shadows they cast, like the bat, can clue scientists in on things like the disk’s size and density. Our solar system formed from the same type of disk of material, but we can only see the end result of planet building here — we want to learn more about the process!

Jack-o-lantern Sun 🎃

image

A jack-o-lantern in space?! Our Solar Dynamics Observatory watches the Sun at all times, keeping a close eye on space weather. In October 2014, the observatory captured a chilling image of the Sun with a Halloweenish face!

Skull Comet 💀

image

On Halloween a few years ago, an eerie-looking object known as 2015 TB145 sped across the night sky. Scientists observing it with our Infrared Telescope Facility determined that it was most likely a dead comet. It’s important to study objects like comets and asteroids because they’re dangerous if they cross Earth’s path — just ask the dinosaurs!

Halloween Treat 🍬

image

Trick-or-treat! Add a piece of glowing cosmic candy to your Halloween haul, courtesy of Hubble! This image shows the Saturn Nebula, formed from the outer layers ejected by a dying star, destined to be recycled into later generations of stars and planets. Our Sun will experience a similar fate in around five billion years.

Witch’s Broom Nebula 🧹

image

Massive stars are in for a more fiery fate, as the Witch's Broom Nebula shows. Hubble’s close-up look reveals wisps of gas — shrapnel leftover from a supernova explosion. Astronomers believe that a couple of supernovae occur each century in galaxies like our own Milky Way.

Zombie Stars 🧟

image

Supernovae usually herald the death of a star, but on a few occasions astronomers have found “zombie stars” left behind after unusually weak supernovae. Our Nuclear Spectroscopic Telescope Array (NuSTAR) has even spotted a mysterious glow of high-energy X-rays that could be the “howls” of dead stars as they feed on their neighbors.

Intergalactic Ghost Towns 🏚️

image

The universe is brimming with galaxies, but it’s also speckled with some enormous empty pockets of space, too. These giant ghost towns, called voids, may be some of the largest things in the cosmos, and since the universe is expanding, galaxies are racing even farther away from each other all the time! Be grateful for your place in space — the shadowy patches of the universe are dreadful lonely scenes.

Mysterious Invisible Force 🕵️‍♀️

image

Some forces are a lot creepier than floorboards creaking or a door slamming shut unexpectedly when you’re home alone. Dark energy is a mysterious antigravity pressure that our Wide Field Infrared Survey Telescope (WFIRST) is going to help us understand. All we know so far is that it’s present everywhere in the cosmos (even in the room with you as you read this) and it controls the fate of the universe, but WFIRST will study hundreds of millions of galaxies to figure out just what dark energy is up to.

Want to learn some fun ways to celebrate Halloween in (NASA) style? Check out this link!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

10 Things: Calling All Pluto Lovers

June 22 marks the 40th anniversary of Charon’s discovery—the dwarf planet Pluto’s largest and first known moon. While the definition of a planet is the subject of vigorous scientific debate, this dwarf planet is a fascinating world to explore. Get to know Pluto’s beautiful, fascinating companion this week.

1. A Happy Accident

image

Astronomers James Christy and Robert Harrington weren’t even looking for satellites of Pluto when they discovered Charon in June 1978 at the U.S. Naval Observatory Flagstaff Station in Arizona – only about six miles from where Pluto was discovered at Lowell Observatory. Instead, they were trying to refine Pluto's orbit around the Sun when sharp-eyed Christy noticed images of Pluto were strangely elongated; a blob seemed to move around Pluto. 

The direction of elongation cycled back and forth over 6.39 days―the same as Pluto's rotation period. Searching through their archives of Pluto images taken years before, Christy then found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto.

2. Forever and Always

image

Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto's underworld. But Christy also chose it for a more personal reason: The first four letters matched the name of his wife, Charlene. (Cue the collective sigh.)

3. Big Little Moon

image

Charon—the largest of Pluto’s five moons and approximately the size of Texas—is almost half the size of Pluto itself. The little moon is so big that Pluto and Charon are sometimes referred to as a double dwarf planet system. The distance between them is 12,200 miles (19,640 kilometers).

4. A Colorful and Violent History

image

Many scientists on the New Horizons mission expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more. High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14 and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator.

5. Grander Canyon

image

This great canyon system stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and likely around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.

6. Officially Official

image

In April 2018, the International Astronomical Union—the internationally recognized authority for naming celestial bodies and their surface features—approved a dozen names for Charon’s features proposed by our New Horizons mission team. Many of the names focus on the literature and mythology of exploration.

7. Flying Over Charon

This flyover video of Charon was created thanks to images from our New Horizons spacecraft. The “flight” starts with the informally named Mordor (dark) region near Charon’s north pole. Then the camera moves south to a vast chasm, descending to just 40 miles (60 kilometers) above the surface to fly through the canyon system.

8. Strikingly Different Worlds

image

This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by New Horizons as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain.

9. Quality Facetime

image

Charon neither rises nor sets, but hovers over the same spot on Pluto's surface, and the same side of Charon always faces Pluto―a phenomenon called mutual tidal locking.

10. Shine On, Charon

image

Bathed in “Plutoshine,” this image from New Horizons shows the night side of Charon against a star field lit by faint, reflected light from Pluto itself on July 15, 2015.

Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What aspect of spaceflight always blows your mind, even after all this time?


Tags
9 years ago

Twins Study Reddit AMA

Our Human Research Program is conducting a Twins Study on retired twin astronauts Scott and Mark Kelly. The study began during Scott Kelly’s One-Year Mission, which encompassed International Space Station Expeditions 43, 44, 45 and 46. 

image

Now that Scott has returned from space, researchers are integrating data as well as taking measurements on Earth from the twins. This is the first time we have conducted Omics research on identical twins. Omics is a broad area of biological and molecular studies that, in general, means the study of the entire complement of biomolecules, like proteins; metabolites or genes. 

Comparing various types of molecular information on identical individuals while one undergoes unique stresses, follows a defined diet, and resides in microgravity to one who resides on Earth, with gravity, should yield interesting results. It is hoped one day that all individuals will have access to having their Omics profiles done. This is a first step towards personalizing medicine for astronauts and hopefully for the rest of us. 

For background, check out NASA’s Omics video series at https://www.nasa.gov/twins-study.

During this Reddit AMA, you can ask our researchers anything about the Twins Study and Omics.

image

Participants include:

Kjell Lindgren, M.D., NASA astronaut, Expedition 44/45 Flight Engineer and medical officer

Susan M. Bailey, Ph.D., Twins Study Principal Investigator, Professor, Radiation Cancer Biology & Oncology, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University

Christopher E. Mason, Ph.D., Twins Study Principal Investigator, WorldQuant Foundations Scholar, Affiliate Fellow of Genomics, Ethics, and Law, ISP, Yale Law School, Associate Professor, Department of Physiology and Biophysics, Weill Cornell Medicine

Brinda Rana, Ph.D., Associate Professor, Department of Psychiatry, University of California San Diego School of Medicine

Michael P. Snyder, Ph.D., M.D., FACS, Twins Study Principal Investigator, Stanford W. Ascherman, Professor in Genetics, Chair, Dept. of Genetics, Director, Center for Genomics and Personalized Medicine, Stanford School of Medicine

Join the Reddit AMA on Monday, April 25 at 11 a.m. EDT HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

People of OSIRIS-REx

As OSIRIS-REx closes in on its target destination—asteroid Bennu—anticipation is building for the first-ever, close-up glimpse of this small world. It took thousands of people to come this far. Get to know a few members of the team:

People Of OSIRIS-REx

1. Carl Hergenrother, Astronomy Working Group Lead & Strategic and Tactical Scientist

Job Location: University of Arizona, Tucson Expertise: Asteroids & Comets Time on mission: Since before there was a mission Age: 45 Hometown: Oakland, New Jersey

“When you’re observing Bennu with a telescope, you see it as a dot. … So when it actually becomes its own little world, it’s really exciting—and almost a little sad. Up until that point, it can be anything. And now, there it is and that’s it.”

People Of OSIRIS-REx

2. Heather Roper, Graphic Designer

Job Location: University of Arizona, Tucson Job Title: Graphic Designer Expertise: Visual Communications Time on mission: 5 years Age: 25 Hometown: Tucson, Arizona

“I really like the challenge of visually depicting the science of the mission and getting to show people things that we can’t see.”

People Of OSIRIS-REx

3. Jason Dworkin, Project Scientist

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Origin-of-life Chemistry Time on mission: Since before there was a mission Age: 49 Hometown: Houston, Texas

"In 10th grade, I had to do a science fair project for biology class. … I wanted to expand on chemistry experiments from old journal papers; but that could have been dangerous. I got in touch with … a pioneering scientist in origin-of-life research and asked for advice. He was worried that I would accidentally injure myself, so he invited me into his lab . . . that helped set my career.”

People Of OSIRIS-REx

4. Sara Balram Knutson, Science Operations Lead Engineer

Job Location: University of Arizona, Tucson Expertise: Aerospace Engineering Time on mission: 6 years Age: 31 Hometown: Vacaville, California

“My dad was in the Air Force, so I grew up being a bit of an airplane nerd. When I was in high school, I really liked math, science, and anything having to do with flight. I looked for a field where I could combine all those interests and I found aerospace engineering.”

People Of OSIRIS-REx

5. Nancy Neal Jones, Public Affairs Lead

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Science Communications Time on mission: 7 years Age: 51 Hometown: New York, New York

“We’re going to a pristine asteroid to take a sample to bring to Earth. This means that my children and grandchildren, if they decide to go into the sciences, may have an opportunity analyze the Bennu samples.”

People Of OSIRIS-REx

6. Javier Cerna, Communications System Engineer

Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Electrical Engineering Time on mission: Since before there was a mission Age: 37 Hometown: Born in Mexico City, and raised in Los Angeles, and Las Cruces, New Mexico

“One thing we do is evaluate how strong the signal from the spacecraft is—kind of like checking the strength of the WiFi connection. Basically, we’re ensuring that the link from the spacecraft to the ground, and vice versa, stays strong.”

People Of OSIRIS-REx

7. Jamie Moore, Contamination Control Engineer

Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Chemistry Time on mission: 5 years Age: 32 Hometown: Apple Valley, Minnesota & Orlando, Florida

“I was there for just about every deployment of the sampling hardware to make sure it was kept clean and to evaluate the tools engineers were using. I even went to Florida with the spacecraft to make sure it stayed clean until launch.”

People Of OSIRIS-REx

8. Mike Moreau, Flight Dynamics System Manager

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland; Littleton, Colorado Expertise: Mechanical and aerospace engineering Time on mission: 5 years Age: 47 Hometown: Swanton, Vermont

“I grew up on a dairy farm in Vermont, which is a world away from working for NASA. But I can trace a lot of my success as an engineer and a leader back to things that I learned on my dad’s farm.”

People Of OSIRIS-REx

9. Johnna L. McDaniel, Contamination Control Specialist

Job Location: NASA’s Kennedy Space Center, Florida Expertise: Anti-Contamination Cleaning Time on Mission: 4 months Age: 53 Hometown: Cocoa, Florida

“The clothing requirements depend on the payload. With OSIRIS-Rex, we could not wear any items made with nylon. This was because they have amino acid-based polymers in them and would have contaminated the spacecraft. I even had a special bucket for mopping.”

People Of OSIRIS-REx

10. Annie Hasten, Senior Financial Analyst

Job Location: Lockheed Martin Corporation, Steamboat Springs, Colorado Expertise: Business Time on Mission: 1.5 years Age: 30 Hometown: Littleton, Colorado

“I think it’s a pleasure to work with people who are so intensely passionate about their jobs. These engineers are doing their dream jobs, so you feed off of that positive energy.”

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • shadow-king-club
    shadow-king-club reblogged this · 2 weeks ago
  • shadow-king-club
    shadow-king-club liked this · 2 weeks ago
  • andy202405
    andy202405 liked this · 1 month ago
  • blackpointgame
    blackpointgame liked this · 2 months ago
  • 3915
    3915 liked this · 2 months ago
  • poryog
    poryog liked this · 3 months ago
  • simplyphytoplankton
    simplyphytoplankton liked this · 3 months ago
  • papawolf1969
    papawolf1969 liked this · 4 months ago
  • radoser123
    radoser123 liked this · 5 months ago
  • vivedsims
    vivedsims liked this · 5 months ago
  • marcfreitx
    marcfreitx liked this · 5 months ago
  • pixion
    pixion liked this · 5 months ago
  • staekiiiw
    staekiiiw liked this · 7 months ago
  • slowly-becoming-like-draculaura
    slowly-becoming-like-draculaura liked this · 7 months ago
  • anamariaurrutia
    anamariaurrutia reblogged this · 7 months ago
  • anamariaurrutia
    anamariaurrutia liked this · 7 months ago
  • reeddiereed
    reeddiereed liked this · 7 months ago
  • through-the-digital-mirror
    through-the-digital-mirror liked this · 8 months ago
  • xftxr-world
    xftxr-world liked this · 8 months ago
  • everaleaf
    everaleaf reblogged this · 8 months ago
  • everaleaf
    everaleaf liked this · 8 months ago
  • c-o-s-m-o-o-n
    c-o-s-m-o-o-n liked this · 9 months ago
  • finchseatheadrest
    finchseatheadrest liked this · 9 months ago
  • speedwagons-glorious-mane
    speedwagons-glorious-mane reblogged this · 9 months ago
  • bombers-world
    bombers-world liked this · 9 months ago
  • accidentallyoccidental
    accidentallyoccidental reblogged this · 10 months ago
  • fully-mess98
    fully-mess98 reblogged this · 10 months ago
  • fully-mess98
    fully-mess98 liked this · 10 months ago
  • peyman-akbari
    peyman-akbari liked this · 10 months ago
  • moved-rubyreindeer
    moved-rubyreindeer reblogged this · 10 months ago
  • moved-rubyreindeer
    moved-rubyreindeer reblogged this · 10 months ago
  • moved-rubyreindeer
    moved-rubyreindeer liked this · 10 months ago
  • yelow-heart
    yelow-heart reblogged this · 11 months ago
  • ripthewaterintwo
    ripthewaterintwo reblogged this · 11 months ago
  • sporadicroadwolfflower
    sporadicroadwolfflower reblogged this · 11 months ago
  • butchartisan
    butchartisan reblogged this · 11 months ago
  • butchartisan
    butchartisan liked this · 11 months ago
  • pinefeatherz
    pinefeatherz liked this · 1 year ago
  • felizr
    felizr liked this · 1 year ago
  • blignick
    blignick liked this · 1 year ago
  • beefstrogginoff26
    beefstrogginoff26 reblogged this · 1 year ago
  • beefstrogginoff26
    beefstrogginoff26 liked this · 1 year ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags