Every second, every square meter of Earth’s atmosphere is pelted by thousands of high-energy particles traveling at nearly the speed of light. These zippy little assailants are called cosmic rays, and they’ve been puzzling scientists since they were first discovered in the early 1900s. One of the Fermi Gamma-ray Space Telescope’s top priority missions has been to figure out where they come from.
“Cosmic ray” is a bit of a misnomer. Makes you think they’re light, right? But they aren’t light at all! They’re particles that mostly come from outside our solar system — which means they're some of the only interstellar matter we can study — although the Sun also produces some. Cosmic rays hit our atmosphere and break down into secondary cosmic rays, most of which disperse quickly in the atmosphere, although a few do make it to Earth’s surface.
Cosmic rays aren't dangerous to those of us who spend our lives within Earth's atmosphere. But if you spend a lot of time in orbit or are thinking about traveling to Mars, you need to plan how to protect yourself from the radiation caused by cosmic rays.
Cosmic rays are subatomic particles — smaller particles that make up atoms. Most of them (99%) are nuclei of atoms like hydrogen and helium stripped of their electrons. The other 1% are lone electrons. When cosmic rays run into molecules in our atmosphere, they produce secondary cosmic rays, which include even lighter subatomic particles.
Most cosmic rays reach the same amount of energy a small particle accelerator could produce. But some zoom through the cosmos at energies 40 million times higher than particles created by the world’s most powerful man-made accelerator, the Large Hadron Collider. (Lightning is also a pretty good particle accelerator).
So where do cosmic rays come from? We should just be able to track them back to their source, right? Not exactly. Any time they run into a strong magnetic field on their way to Earth, they get deflected and bounce around like a game of cosmic pinball. So there’s no straight line to follow back to the source. Most of the cosmic rays from a single source don’t even make it to Earth for us to measure. They shoot off in a different direction while they’re pin balling.
Photo courtesy of Argonne National Laboratory
In 1949 Enrico Fermi — an Italian-American physicist, pioneer of high-energy physics and Fermi satellite namesake — suggested that cosmic rays might accelerate to their incredible speeds by ricocheting around inside the magnetic fields of interstellar gas clouds. And in 2013, the Fermi satellite showed that the expanding clouds of dust and gas produced by supernovas are a source of cosmic rays.
When a star explodes in a supernova, it produces a shock wave and rapidly expanding debris. Particles trapped by the supernova remnant magnetic field bounce around wildly.
Every now and then, they cross the shock wave and their energy ratchets up another notch. Eventually they become energetic enough to break free of the magnetic field and zip across space at nearly the speed of light — some of the fastest-traveling matter in the universe.
How can we track them back to supernovas when they don’t travel in a straight line, you ask? Very good question! We use something that does travel in a straight line — gamma rays (actual rays of light this time, on the more energetic end of the electromagnetic spectrum).
When the particles get across the shock wave, they interact with non-cosmic-ray particles in clouds of interstellar gas. Cosmic ray electrons produce gamma rays when they pass close to an atomic nucleus. Cosmic ray protons, on the other hand, produce gamma rays when they run into normal protons and produce another particle called a pion (Just hold on! We’re almost there!) which breaks down into two gamma rays.
The proton- and electron-produced gamma rays are slightly different. Fermi data taken over four years showed that most of the gamma rays coming from some supernova remnants have the energy signatures of cosmic ray protons knocking into normal protons. That means supernova remnants really are powerful particle accelerators, creating a lot of the cosmic rays that we see!
There are still other cosmic ray sources on the table — like active galactic nuclei — and Fermi continues to look for them. Learn more about what Fermi’s discovered over the last 10 years and how we’re celebrating its accomplishments.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Here are astronauts Richard Truly & Guion Bluford of Space Transport System 8 (STS-8) grabbing some shut-eye before the wrap up of their mission. This mission had:
The first African American, Guion Bluford, to fly in space
The first night launch and landing during the Space Shuttle Program
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
@yesrazorbladecupcakes: Do you guys ever just goof off?
What is the weirdest thing you had to account for when building the perseverance rover?
On Dec 5. 2019, a SpaceX Falcon 9 rocket blasted off from Cape Canaveral Air Force Station in Florida carrying a Dragon cargo capsule filled with dozens of scientific experiments. Those experiments look at everything from malting barley in microgravity to the spread of fire.
Not only are the experiments helping us better understand life in space, they also are giving us a better picture of our planet and benefiting humanity back on Earth.
Every material on the Earth’s surface – soil, rocks, vegetation, snow, ice and human-made objects – reflects a unique spectrum of light. The Hyperspectral Imager Suite (HISUI) takes advantage of this to identify specific materials in an image. It could be useful for tasks such as resource exploration and applications in agriculture, forestry and other environmental areas.
Many studies of plants in space focus on how they grow in microgravity. The Malting ABI Voyager Barley Seeds in Microgravity experiment is looking at a different aspect of plants in space: the malting process. Malting converts starches from grain into various sugars that can be used for brewing, distilling and food production. The study compares malt produced in space and on the ground for genetic and structural changes, and aims to identify ways to adapt it for nutritional use on spaceflights.
AztechSat-1, the first satellite built by students in Mexico for launch from the space station, is smaller than a shoebox but represents a big step for its builders. Students from a multidisciplinary team at Universidad Popular Autónoma del Estado de Puebla in Puebla, Mexico, built the CubeSat. This investigation demonstrates communication within a satellite network in low-Earth orbit. Such communication could reduce the need for ground stations, lowering the cost and increasing the number of data downloads possible for satellite applications.
Nobody wants a spacecraft to spring a leak – but if it happens, the best thing you can do is locate and fix it, fast. That’s why we launched the first Robotic External Leak Locator (RELL) in 2015. Operators can use RELL to quickly detect leaks outside of station and help engineers formulate a plan to resolve an issue. On this latest commercial resupply mission, we launched the Robotic Tool Stowage (RiTS), a docking station that allows the RELL units to be stored on the outside of space station, making it quicker and simpler to deploy the instruments.
Understanding how fire spreads in space is crucial for the safety of future astronauts and for controlling fire here on Earth. The Confined Combustion investigation examines the behavior of flame as it spreads in differently-shaped spaces in microgravity. Studying flames in microgravity gives researchers a chance to look at the underlying physics and basic principles of combustion by removing gravity from the equation.
Here on Earth you might be told to drink milk to grow up with strong bones, but in space, you need a bit more than that. Astronauts in space have to exercise for hours a day to prevent substantial bone and muscle loss. A new experiment, Rodent Research-19, is seeing if there is another way to prevent the loss by targeting signaling pathways in your body at the molecular level. The results could also support treatments for a wide range of conditions that cause muscle and bone loss back here on Earth.
Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook.
If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Dr. Jonny Kim was selected by NASA to join the 2017 Astronaut Candidate Class. He reported for duty in August 2017 and having completed the initial astronaut candidate training is now eligible for mission assignments to the International Space Station, the Moon and eventually Mars. A U.S. Navy SEAL, Kim completed more than 100 combat operations. Kim was commissioned as a naval officer through an enlisted-to-officer program and earned his degree in mathematics at the University of San Diego and a doctorate of medicine at Harvard Medical School. Born and raised in Los Angeles, California to Korean-American immigrants, he enjoys spending time with his family, outdoor activities, academic and professional mentoring, strength training and lifelong learning.
Dr. Kim took some time from his job as a NASA astronaut to answer questions about his life and career! Enjoy:
For many reasons. I think that humans are natural explorers. There is a calling in all of us to explore the unknown, push the boundaries and redefine what is possible. I’m drawn to the physical and mental challenges of space exploration and the teamwork required to complete such an objective. And finally, the opportunity to do something good for our country, for humanity, and to inspire the next generation of thinkers, leaders, explorers and scientists.
I’m a big believer that people can grow stronger bonds with each other when they succeed through shared hardship. And I think that developing relationships with one another is one of the best ways to forge successful team skills to be successful in any endeavor. With that context, I can tell you that my favorite memory from astronaut training was traversing the deep canyon slots of the Utah Canyon Lands for almost 2 weeks with my classmates. We hiked trails, climbed canyons, swam through deep, dark, cold and murky waters and forged through uncertainty, all while being together. This shared hardship was not only fun, but it helped us grow closer to one another. It’s one of the fondest memories I have when I think about my amazing classmates, and through that shared hardship, I know I can count on any one of my fellow astronauts when the going gets tough.
Don’t Stop Believin’ by Journey.
I would tell myself to always follow your passion, never stature or money, because following a life of passion is long-term, sustainable and usually helps others. Be accountable for your mistakes and failures, and maintain the humility to learn from those mistakes and failures. And finally, I would caution myself that all worthwhile goals are difficult to obtain, but with the right attitude and hard work, you can accomplish anything.
Being a Naval Special Warfare Operator taught me that humans are capable of accomplishing ten times what their bodies and mind tell them. I learned there are no limits in life, and the biggest setback one can have is a poor attitude. I learned the value of strong leadership and accountability. I also learned the meaning of sacrifice, hardship, teamwork, love and compassion. All these traits helped me to develop the hard and soft skills required to be an astronaut.
This is a great question and the answer is evolving. The way we answer this question is by being thoughtful and consulting the medical communities to weigh the pros and cons of every single decision we make regarding this. Mass plays an important factor, so we have to be mindful of everything we bring and how we train for it.
It would have been my wife but she was with me when I heard the news. The first person I called was my mom.
A picture of my wife and kids.
It means that I have a duty and obligation to serve humanity’s best interests. To explore the unknown, push boundaries and redefine what’s possible. It means I have an immense opportunity to serve as an example and inspiration to our next generation of leaders and explorers. It also means there is a hard road ahead, and when the mission calls for us, we will be ready.
An automatic watch, because the engineering behind a timepiece is a beautiful thing. An American flag, because I proudly believe and uphold the principles and ideals our country stands for. And finally, a nice journal that I can put handwritten thoughts on.
Thank you for your time, and good luck on your first spaceflight assignment!
Follow Jonny Kim on Twitter and Instagram to keep up with his life as NASA astronaut.
It’s not too late to APPLY to #BeAnAstronaut! Applications close TOMORROW, March 31.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What is an upcoming project/mission you're most excited for?
It is likely that I’ll be assigned a mission to the International Space Station (ISS) within the next few years. We’ve had a continuous presence on the Space Station for 17 years now, along with our international partners (Russian Space Agency, European Space Agency, Japanese Space Agency, and Canadian Space Agency). Missions on the ISS typically last 6 months. I’m incredibly excited to contribute to the impressive array of scientific experiments that we are conducting every day on ISS (I am a scientist after all!), and very much look forward to the potential of going for a spacewalk and gaining that perspective of gazing down on the fragile blue ball that is our home from above. Beyond that, being part of test missions on the Orion spacecraft (currently under construction at NASA!) would be an extraordinary opportunity. The current NASA plan is to send astronauts in Orion in a mission that will go 40,000 miles beyond the Moon in the early 2020s, reaching a distance further than that ever travelled by humans. I’d certainly be game for that!
Our Juno spacecraft may be millions of miles from Earth, but that doesn’t mean you can’t get involved with the mission and its science. Here are a few ways that you can join in on the fun:
This July 4, our solar-powered Juno spacecraft arrives at Jupiter after an almost five-year journey. In the evening of July 4, the spacecraft will perform a suspenseful orbit insertion maneuver, a 35-minute burn of its main engine, to slow the spacecraft by about 1,212 miles per hour so it can be captured into the gas giant’s orbit. Watch live coverage of these events on NASA Television:
Pre-Orbit Insertion Briefing Monday, July 4 at 12 p.m. EDT
Orbit Insertion Coverage Monday, July 4 at 10:30 p.m. EDT
Orbit Insertion Coverage Facebook Live Monday, July 4 at 10:30 p.m. EDT
Be sure to also check out and follow Juno coverage on the NASA Snapchat account!
The Juno spacecraft will give us new views of Jupiter’s swirling clouds, courtesy of its color camera called JunoCam. But unlike previous space missions, professional scientists will not be the ones producing the processed views, or even choosing which images to capture. Instead, the public will act as a virtual imaging team, participating in key steps of the process, from identifying features of interest to sharing the finished images online.
After JunoCam data arrives on Earth, members of the public will process the images to create color pictures. Juno scientists will ensure JunoCam returns a few great shots of Jupiter’s polar regions, but the overwhelming majority of the camera’s image targets will be chosen by the public, with the data being processed by them as well. Learn more about JunoCam HERE.
Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
To all those looking to the stars, believe in yourself – we do. ❤️ From auto mechanic to geologist - everyone's story is different. Our NASA astronauts come from all walks of life, with backgrounds as unique as the individuals themselves. Get to know their stories and even apply to #BeAnAstronaut, HERE. Applications close March 31.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This summer, 30 research projects were launched by recent college graduates and early career professionals as part of our DEVELOP program. The aim is to use our satellite observations of Earth to address an environmental or public policy issue. And they have just 10 weeks to do it! On Aug. 10, 2016, the “DEVELOPers” gathered at our Headquarters in Washington, DC to showcase their results. So, how can Earth observations solve real-world problems? Let’s take a look:
1. They help land managers identify the locations of invasive species.
Austin Haney, DEVELOP project co-lead at University of Georgia, has seen first-hand how an invasive species can affect the ecosystem of Lake Thurmond, a large reservoir that straddles the border between Georgia and South Carolina. Birds in the area “behave visibly different,” he said, after they consume a toxic cyanobacteria that lives on Hydrilla verticillata, an invasive aquatic plant. Ingesting the toxin causes a neurodegenerative disease and ultimately death. Scores of birds have been found dead near lake areas where large amounts of the toxin-supporting Hydrilla grow. To help lake managers better address the situation, Haney and project members developed a tool that uses data from the Landsat 8 satellite to map the distribution of Hydrilla across the lake.
Image Credit: NASA/Bill Ingalls
2. They help identify wildlife habitat threatened by wildfires.
Maps that depict habitat and fire risk in eastern Idaho previously stopped short of Craters of the Moon National Monument and Preserve, where shrubs and grasses transition to a sea of ankle-twisting basalt. But the environment is not as inhospitable as it first appears. Throughout the monument there are more than 500 kipukas —pockets of older lava capable of supporting some vegetation. That means it is also prone to burning. Project lead Courtney Ohr explained how her team used data from the Landsat 8 and Sentinel-2 satellites to develop a model that can simulate the area’s susceptibility to wildfires. Decision makers can use this model to monitor the remote wildlife habitat from afar.
Image Credit: NASA/Bill Ingalls
3. In conjunction with Instagram, they help find seaweed blooms
Who knew that Instagram could be a tool for science? One DEVELOP team searched for photographs of massive seaweed (sargassum) blooms in the Caribbean, mapped the locations, and then checked what satellites could see. In the process, they tested two techniques for finding algae and floating vegetation in the ocean.
Image Credit: Caribbean Oceans Team
4. They help conserve water by reducing urban stormwater runoff.
Atlanta’s sewer system is among the nation’s most expensive. Yet, the city still struggles with stormwater. It’s an uphill climb as new construction paves over more of the city, hindering its ability to absorb rain. The University of Georgia DEVELOP team partnered with The Nature Conservancy to address the problem.
Using satellite imagery, the team was able to pinpoint areas well-poised to capture more of the city’s runoff. They identified 17 communities ripe for expanding green infrastructure and reforestation. The team used the Land-Use Conflict Identification Strategy and Soil and Water Assessment Tool models and Landsat and Terra satellite data. Their analysis provides local groups with a working picture of the city’s water resources.
Image Credit: NASA/Bill Ingalls
5. They show the spread of the mite eating away Puerto Rico’s palm trees.
The red palm mite has devastated Puerto Rico’s trees in recent years. The insect chewed its way through coconut palms, bananas, and plantains on the island in the recent decade. Its spread has hurt crops across the Caribbean.
A DEVELOP team led by Sara Lubkin analyzed satellite imagery to track the mites’ rapid spread from 2002. The team mapped changes to vegetation, such as yellowing, and differences in canopy structure. They made use of imagery from Landsat, Hyperion, IKONOS, and aerial views. Their work can be used to mitigate current mite infestations and monitor and prevent future ones.
Image Credit: NASA/Bill Ingalls
6. They evaluate landslide-prone areas in the developing world
One team of DEVELOPers took on several projects to aid people in developing nations. This team from Alabama examined satellite imagery to find past landslides in the African nation of Malawi. Factors such as flooding after long periods of drought have made the country increasingly prone to landslides. Blending maps of the landscape, rainfall data, and population centers, the young researchers assessed the areas most at risk—and most in need of education and support—from landslides.
Image Credit: East Africa Disasters II Team
Want to read more about DEVELOP projects, or get involved? Summaries, images, and maps of current and past projects can be viewed HERE. You can also learn how to apply for the DEVELOP program HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
As an intense winter storm approaches the mid-Atlantic this weekend, our satellites watch from above. The storm is expected to produce a wade swath of more than 2 feet of snow in some areas.
The below supercomputer simulation crunched the data to provide a look at the flow of clouds from storm systems around the globe, including the developing blizzard across the eastern United States.
This storm won’t only have a snowy impact on the mid-Atlantic region, but will also cause severe weather in the Gulf Coast. Satellites observe extreme rainfall in the area.
Data from NASA-NOAA Suomi NPP satellite and NOAA’s GOES-East satellite are being used to create images and animation of the movement of this powerful storm. For updates, visit: http://www.nasa.gov/feature/goddard/2016/nasa-sees-major-winter-storm-headed-for-eastern-us
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts