What is the weirdest thing you had to account for when building the perseverance rover?
On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.
Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.
ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!
This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Michael S. Hopkins was selected by NASA as an astronaut in 2009. The Missouri native is currently the Crew-1 mission commander for NASA’s next SpaceX launch to the International Space Station on Nov. 14, 2020. Hopkin’s Crew-1 mission will mark the first-ever crew rotation flight of a U.S. commercial spacecraft with astronauts on board, and it secures the U.S.’s ability to launch humans into space from American soil once again. Previously, Hopkins was member of the Expedition 37/38 crew and has logged 166 days in space. During his stay aboard the station, he conducted two spacewalks totaling 12 hours and 58 minutes to change out a degraded pump module. He holds a Bachelor of Science in Aerospace Engineering from the University of Illinois and a Master of Science in Aerospace Engineering.
He took some time from being a NASA astronaut to answer questions about his life and career! Enjoy:
I hope people are thinking about the fact that we’re starting a new era in human spaceflight. We’re re-opening human launch capability to U.S. soil again, but it’s not just that. We’re opening low-Earth orbit and the International Space Station with commercial companies. It’s a lot different than what we’ve done in the past. I hope people realize this isn’t just another launch – this is something a lot bigger. Hopefully it’s setting the stage, one of those first steps to getting us to the Moon and on to Mars.
First off, just like being an astronaut, it involves a lot of training when you first get started. I went to the U.S. Air Force Test Pilot School and spent a year in training and just learning how to be a flight test engineer. It was one of the most challenging years I’ve ever had, but also one of the more rewarding years. What it means afterwards is, you are basically testing new vehicles or new systems that are going on aircraft. You are testing them before they get handed over to the operational fleet and squadrons. You want to make sure that these capabilities are safe, and that they meet requirements. As a flight test engineer, I would help design the test. I would then get the opportunity to go and fly and execute the test and collect the data, then do the analysis, then write the final reports and give those conclusions on whether this particular vehicle or system was ready to go.
A common theme for me is to just have patience. Enjoy the ride along the way. I think I tend to be pretty high intensity on things and looking back, I think things happen when they’re supposed to happen, and sometimes that doesn’t necessarily agree with when you think it should happen. So for me, someone saying, “Just be patient Mike, it’s all going to happen when it’s supposed to,” would be really good advice.
There’s a lot of experiments I had the opportunity to participate in, but the ones in particular I liked were ones where I got to interact directly with the folks that designed the experiment. One thing I enjoyed was a fluid experiment called Capillary Flow Experiment, or CFE. I got to work directly with the principal investigators on the ground as I executed that experiment. What made it nice was getting to hear their excitement as you were letting them know what was happening in real time and getting to hear their voices as they got excited about the results. It’s just a lot of fun.
I think most of us when we think about whatever it is we do, we don’t think of it in those terms. Space is risky, yes, but there’s a lot of other risky jobs out there. Whether it’s in the military, farming, jobs that involve heavy machinery or dangerous equipment… there’s all kinds of jobs that entail risk. Why do it? You do it because it appeals to you. You do it because it’s what gets you excited. It just feels right. We all have to go through a point in our lives where we figure out what we want to do and what we want to be. Sometimes we have to make decisions based on factors that maybe wouldn’t lead you down that choice if you had everything that you wanted, but in this particular case for me, it’s exactly where I want to be. From a risk standpoint, I don’t think of it in those terms.
There are many facets to Soichi Noguchi. I’m thinking about the movie Shrek. He has many layers! He’s very talented. He’s very well-thought. He’s very funny. He’s very caring. He’s very sensitive to other people’s needs and desires. He’s a dedicated family man. I could go on and on and on… so maybe like an onion – full of layers!
I love them both. But can I say Firefly? There’s a TV series out there called Firefly. It lasted one season – kind of a space cowboy-type show. They did have a movie, Serenity, that was made as well. But anyway, I love both Star Wars and Star Trek. We’ve really enjoyed The Mandalorian. I mean who doesn’t love Baby Yoda right? It’s all fun.
I tried four times over the course of 13 years. My first three attempts, I didn’t even have references checked or interviews or anything. Remember what we talked about earlier, about patience? For my fourth attempt, the fact is, it happened when it was supposed to happen. I didn’t realize it at the time. I would have loved to have been picked on my first attempt like anybody would think, but at the same time, because I didn’t get picked right away, my family had some amazing experiences throughout my Air Force career. That includes living in Canada, living overseas in Italy, and having an opportunity to work at the Pentagon. All of those helped shape me and grow my experience in ways that I think helped me be a better astronaut.
One of my favorite pictures was a picture inside the station at night when all of the lights were out. You can see the glow of all of the little LEDs and computers and things that stay on even when you turn off the overhead lights. You see this glow on station. It’s really one of my favorite times because the picture doesn’t capture it all. I wish you could hear it as well. I like to think of the station in some sense as being alive. It’s at that time of night when everybody else is in their crew quarters in bed and the lights are out that you feel it. You feel the rhythm, you feel the heartbeat of the station, you see it in the glow of those lights – that heartbeat is what’s keeping you alive while you’re up there. That picture goes a small way of trying to capture that, but I think it’s a special time from up there.
My wedding bands. I’m also taking up pilot wings for my son. He wants to be a pilot so if he succeeds with that, I’ll be able to give him his pilot wings. Last time, I took one of the Purple Hearts of a very close friend. He was a Marine in World War II who earned it after his service in the Pacific.
Thank you for your time, Mike, and good luck on your historic mission! Get to know a bit more about Mike and his Crew-1 crew mates Victor Glover, Soichi Noguchi, and Shannon Walker in the video above.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Astronaut Jessica Meir will be taking your questions in an Answer Time session on Saturday, March 11 from 4:30-5:30pm ET/1:30-2:30pm PT here on NASA’s Tumblr. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Jessica Meir was selected to become an astronaut in 2013 and was part of NASA’s first astronaut class that was 50% female. She and her astronaut classmates are training to fly to space now and are involved in the future of our human exploration program. She’d like to be one of the first astronauts to set foot on Mars and pursue technological and scientific advances.
She holds a Bachelor of Arts in Biology from Brown University, a Master of Science in Space Studies from the International Space University, and a Doctorate in Marine Biology from Scripps Institution of Oceanography (UCSD). In her research, the Caribou, Maine native studied the physiology of animals in extreme environments. Follow Jessica on Twitter at @Astro_Jessica and follow NASA on Tumblr for your regular dose of space.
Today in the NASA Village… Can you Grow Cheese in Space?
Did you know there are several programs where students can apply to have their experiments flown on the International Space Station? The FISE (Foundation for International Space Education) encourages students of all ages to design and propose real experiments to fly in low Earth orbit. Thomas and Nick Hall are two brothers that participated in this program.
When asked what his greatest hurdle was with growing cheese in space, student researcher Thomas replied, “One of the biggest hurdles I face is just simply staying focused. Being a Student Experimenter is very difficult especially in between the ages of 14 and 18, mainly because those are most kids High School years and during these years many kids are either drowned with homework, hanging out with friends, or out partying.”
It is so important we get young students interested early in perusing topics that are out of this world. The experiments chosen are carried out by the astronauts on-board the space station. In the case of cheese balls, Karen Nyberg carried out the experiment and reported back the findings (apparently she was unable to grow the cheese).
When Nick Hall was asked about his experiment to grow toothpaste, he said the most inspiring part was, “Thomas Hall III. My brother was the most inspiring because he was also doing the experiment so he was helping me do the experiment.”
The story of the Hall brothers is a great reminder that experimentation is just that, trials and test of ideas, but ultimately reminds us of the importance of the relationships we have developed on the ground.
Do you have an idea for a research project in space? Do you have a student researcher in mind? Find out how to apply at Student Spaceflight Experiments Program (SSEP) and learn more about space station education opportunities at STEM on Station.
Next time on the NASA Village… The Latest Fashion Sucks.
Do you want more stories? Find our NASA Villagers here!
This year, we’re celebrating a Year of Education on the Station as astronauts and former teachers Joe Acaba and Ricky Arnold have made the International Space Station their home. While aboard, they have been sharing their love of science, technology, engineering and math, along with their passion for teaching. With the Year of Education on the Station is coming to a close, here are some of the highlights from students speaking to the #TeacherOnBoard from across the country!
“The loss of Challenger not only affected a generation of school teachers but also a generation of school children who are now adults.” Ricky’s personal mission was to bring the Challenger Mission full circle and give it a sense of closure by teaching Christa’s Lost Lessons. See some of Christa’s Lost Lessons here.
The concept of surface tension is very apparent on the space station. Fluids do not spill out, they stick to each other. Cool fact: you can drink your fluids from the palm of your hand if you wanted to! Take a look at this demonstration that talks a little more about tension.
The use of bungee cords as well as hook and loop help keep things in place in a microgravity environment. These two items can be found on the space station and on the astronaut’s clothing! Their pants often have hook and loop so they can keep things nearby if they need to be using their hands for something else.
Being an effective communicator and having the ability to be adaptable are great skills to have as a teacher and as an astronaut. Joe Acaba has found that these skills have assisted him in his professional development.
The exercises that astronauts do aboard the space station help them maintain their bone density and muscle mass. They have access to resistance training through ARED (Advanced Resistive Exercise Device) which is a weight machine and for cardio, there is a bicycle and treadmill available to keep up with their physical activity.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We won’t have a solar eclipse until Aug. 21, 2017, but observers in central Africa will see an annular eclipse, where the moon covers most but not all of the sun, on Sept. 1. Observers always need to use safe solar eclipse glasses or filters on telescopes, binoculars and cameras.
Also this month, there are two minor meteor showers, both with about 5 swift and bright meteors per hour at their peak, which will be near dawn. The first is the Aurigid shower on Sept. 1. The new moon on the first means the sky will be nice and dark for the Aurigids.
The second shower is the Epsilon Perseids on Sept. 9. The first quarter moon sets on the 9th at midnight, just in time for the best viewing of the Perseids.
There are many nice pair-ups between the moon and planets this month. You can see the moon between Venus and Jupiter on Sept. 2, and above Venus on the 3rd, right after sunset low on the West-Southwest horizon. On the 15th the nearly full moon pairs up with Neptune, two weeks after its opposition, when the 8th planet is closest to Earth in its orbit around the sun.
Watch the full September “What’s Up” video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
An astronaut aboard the International Space Station shot this photograph of the Green River flowing through deep, red rock canyons in eastern Utah. A main tributary of the Colorado River, the Green flows 730 miles (1,175 kilometers) through Wyoming, Colorado and Utah. The portion of the Green River in this image is just north of Canyonlands National Park.
Bowknot Bend was named for the way the river loops back on itself. Located in Labyrinth Canyon about 25 miles west of Moab, Utah, this river bend runs 7.5 miles (12 kilometers) in a circular loop and ends up 1,200 feet (360 meters) from where it first started. When the two sides of the river merge someday, Bowknot Bend will break off from the main channel and form a lake.
Read more: https://go.nasa.gov/2OMANak
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! Our OSIRIS-REx mission launches at 7:05 p.m. EDT today and will travel to asteroid Bennu.
Scientists chose Bennu as the target of the OSIRIS-REx mission because of its composition, size and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.
Our OSIRIS-REx mission will travel to Bennu and bring a small sample back to Earth for study.
When talking about asteroids, there are some terms scientists use that might not be in your typical vocabulary…but we’ll help with that!
Orbital Eccentricity: This number describes the shape of an asteroid’s orbit by how elliptical it is. For asteroids in orbit around the sun, eccentricity is a number between 0 and 1, with 0 being a perfectly circular orbit and 0.99 being a highly elliptical orbit.
Inclination: The angle, in degrees, of how tilted an asteroid’s orbit is compared to another plane of reference, usually the plane of the Earth’s orbit around the sun.
Orbital Period: The number of days it takes for an asteroid to revolve once around the sun. For example, the Earth’s orbital period is 365 days.
Perihelion Distance: The distance between an asteroid and the sun when the asteroid is closest to the sun.
Aphelion Distance: The distance between the asteroid and the sun when the asteroid is farthest away from the sun.
Astronomical unit: A distance unit commonly used to describe orbits of objects around the sun. The distance from the Earth to the sun is one astronomical unit, or 1 AU, equivalent to about 93 million miles or 150 million kilometers.
Diameter: A measure of the size of an asteroid. It is the length of a line from a point on the surface, through the center of the asteroid, extending out to the opposite surface. Irregularly shaped asteroids may have different diameters depending on which direction they are measured.
Rotation Period: The time it takes for an asteroid to complete one revolution around its axis of rotation. For example, the rotation period of the Earth is approximately 24 hours, or 1 day.
Spectral Type: The classification of an asteroid, based on a measurement of the light reflected by the asteroid.
Watch live launch coverage of OSIRIS-REx to asteroid Bennu starting at 5:30 p.m, on NASA TV: http://www.nasa.gov/nasatv
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Did you know some of the brightest sources of light in the sky come from black holes in the centers of galaxies? It sounds a little contradictory, but it's true! They may not look bright to our eyes, but satellites have spotted oodles of them across the universe.
One of those satellites is our Fermi Gamma-ray Space Telescope. Fermi has found thousands of these kinds of galaxies in the 10 years it's been operating, and there are many more out there!
Black holes are regions of space that have so much gravity that nothing - not light, not particles, nada - can escape. Most galaxies have supermassive black holes at their centers - these are black holes that are hundreds of thousands to billions of times the mass of our sun - but active galactic nuclei (also called "AGN" for short, or just "active galaxies") are surrounded by gas and dust that's constantly falling into the black hole. As the gas and dust fall, they start to spin and form a disk. Because of the friction and other forces at work, the spinning disk starts to heat up.
The disk's heat gets emitted as light - but not just wavelengths of it that we can see with our eyes. We see light from AGN across the entire electromagnetic spectrum, from the more familiar radio and optical waves through to the more exotic X-rays and gamma rays, which we need special telescopes to spot.
About one in 10 AGN beam out jets of energetic particles, which are traveling almost as fast as light. Scientists are studying these jets to try to understand how black holes - which pull everything in with their huge amounts of gravity - somehow provide the energy needed to propel the particles in these jets.
Many of the ways we tell one type of AGN from another depend on how they're oriented from our point of view. With radio galaxies, for example, we see the jets from the side as they're beaming vast amounts of energy into space. Then there's blazars, which are a type of AGN that have a jet that is pointed almost directly at Earth, which makes the AGN particularly bright.
Our Fermi Gamma-ray Space Telescope has been searching the sky for gamma ray sources for 10 years. More than half (57%) of the sources it has found have been blazars. Gamma rays are useful because they can tell us a lot about how particles accelerate and how they interact with their environment.
So why do we care about AGN? We know that some AGN formed early in the history of the universe. With their enormous power, they almost certainly affected how the universe changed over time. By discovering how AGN work, we can understand better how the universe came to be the way it is now.
Fermi's helped us learn a lot about the gamma-ray universe over the last 10 years. Learn more about Fermi and how we're celebrating its accomplishments all year.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Not since 1977 has a full moon dawned in the skies on Christmas. But this year, a bright full moon will be an added gift for the holidays.
This full moon, the last of the year, is called the Full Cold Moon because it occurs during the beginning of winter.
Make sure you get outside to check out this rare event because it won’t happen again until 2034!
Here are a few fun facts about the event and our moon:
The moon’s peak this year will occur at 6:11 a.m. EST
As you gaze up at the Christmas moon, take note that we have a spacecraft currently orbiting Earth’s moon. Our Lunar Reconnaissance Orbiter (LRO) mission has been investigating the lunar surface since 2009
More than 100 spacecraft have been launched to explore the moon
Our moon is the only celestial body beyond Earth that has been visited by human beings..so far!
Twelve human beings have walked on the surface of the moon
The moon makes a complete orbit around Earth in 27 Earth days and rotates or spins at the same rate. This causes the moon to keep the same side, or face, towards Earth during the course of its orbit
The moon is the brightest and largest feature in the night sky. Venus is second
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts