The path through the solar system is a rocky road. Asteroids, comets, Kuiper Belt Objects—all kinds of small bodies of rock, metal and ice are in constant motion as they orbit the Sun. But what’s the difference between them, anyway? And why do these miniature worlds fascinate space explorers so much? The answer is profound: they may hold the keys to better understanding where we all come from. Here’s 10 things to know about the solar system this week:
This picture of Eros, the first of an asteroid taken from an orbiting spacecraft, came from our NEAR mission in February 2000. Image credit: NASA/JPL
Asteroids are rocky, airless worlds that orbit our Sun. They are remnants left over from the formation of our solar system, ranging in size from the length of a car to about as wide as a large city. Asteroids are diverse in composition; some are metallic while others are rich in carbon, giving them a coal-black color. They can be “rubble piles,” loosely held together by their own gravity, or they can be solid rocks.
Most of the asteroids in our solar system reside in a region called the main asteroid belt. This vast, doughnut-shaped ring between the orbits of Mars and Jupiter contains hundreds of thousands of asteroids, maybe millions. But despite what you see in the movies, there is still a great deal of space between each asteroid. With all due respect to C3PO, the odds of flying through the asteroid belt without colliding with one are actually pretty good.
Other asteroids (and comets) follow different orbits, including some that enter Earth’s neighborhood. These are called near-Earth objects, or NEOs. We can actually keep track of the ones we have discovered and predict where they are headed. The Minor Planet Center (MPC) and Jet Propulsion Laboratory’s Center for Near Earth Object Studies (CNEOS) do that very thing. Telescopes around the world and in space are used to spot new asteroids and comets, and the MPC and CNEOS, along with international colleagues, calculate where those asteroids and comets are going and determine whether they might pose any impact threat to Earth.
For scientists, asteroids play the role of time capsules from the early solar system, having been preserved in the vacuum of space for billions of years. What’s more, the main asteroid belt may have been a source of water—and organic compounds critical to life—for the inner planets like Earth.
The nucleus of Comet 67P/Churyumov-Gerasimenko, as seen in January 2015 by the European Space Agency’s Rosetta spacecraft. Image credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comets also orbit the Sun, but they are more like snowballs than space rocks. Each comet has a center called a nucleus that contains icy chunks of frozen gases, along with bits of rock and dust. When a comet’s orbit brings it close to the Sun, the comet heats up and spews dust and gases, forming a giant, glowing ball called a coma around its nucleus, along with two tails – one made of dust and the other of excited gas (ions). Driven by a constant flow of particles from the Sun called the solar wind, the tails point away from the Sun, sometimes stretching for millions of miles.
While there are likely billions of comets in the solar system, the current confirmed number is 3,535. Like asteroids, comets are leftover material from the formation of our solar system around 4.6 billion years ago, and they preserve secrets from the earliest days of the Sun’s family. Some of Earth’s water and other chemical constituents could have been delivered by comet impacts.
An artist re-creation of a collision in deep space. Image credit: NASA/JPL-Caltech
Meteoroids are fragments and debris in space resulting from collisions among asteroids, comets, moons and planets. They are among the smallest “space rocks.” However, we can actually see them when they streak through our atmosphere in the form of meteors and meteor showers.
This photograph, taken by an astronaut aboard the International Space Station, provides the unusual perspective of looking down on a meteor as it passes through the atmosphere. The image was taken on Aug. 13, 2011, during the Perseid meteor shower that occurs every August. Image credit: NASA
Meteors are meteoroids that fall through Earth’s atmosphere at extremely high speeds. The pressure and heat they generate as they push through the air causes them to glow and create a streak of light in the sky. Most burn up completely before touching the ground. We often refer to them as “shooting stars.” Meteors may be made mostly of rock, metal or a combination of the two.
Scientists estimate that about 48.5 tons (44,000 kilograms) of meteoritic material falls on Earth each day.
The constellation Orion is framed by two meteors during the Perseid shower on Aug. 12, 2018 in Cedar Breaks National Monument, Utah. Image credit: NASA/Bill Dunford
Several meteors per hour can usually be seen on any given night. Sometimes the number increases dramatically—these events are termed meteor showers. They occur when Earth passes through trails of particles left by comets. When the particles enter Earth’s atmosphere, they burn up, creating hundreds or even thousands of bright streaks in the sky. We can easily plan when to watch meteor showers because numerous showers happen annually as Earth’s orbit takes it through the same patches of comet debris. This year’s Orionid meteor shower peaks on Oct. 21.
An SUV-sized asteroid, 2008TC#, impacted on Oct. 7, 2008, in the Nubian Desert, Northern Sudan. Dr. Peter Jenniskens, NASA/SETI, joined Muawia Shaddas of the University of Khartoum in leading an expedition on a search for samples. Image credit: NASA/SETI/P. Jenniskens
Meteorites are asteroid, comet, moon and planet fragments (meteoroids) that survive the heated journey through Earth’s atmosphere all the way to the ground. Most meteorites found on Earth are pebble to fist size, but some are larger than a building.
Early Earth experienced many large meteorite impacts that caused extensive destruction. Well-documented stories of modern meteorite-caused injury or death are rare. In the first known case of an extraterrestrial object to have injured a human being in the U.S., Ann Hodges of Sylacauga, Alabama, was severely bruised by a 8-pound (3.6-kilogram) stony meteorite that crashed through her roof in November 1954.
The largest object in the asteroid belt is actually a dwarf planet, Ceres. This view comes from our Dawn mission. The color is approximately as it would appear to the eye. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Don’t let the name fool you; despite their small size, dwarf planets are worlds that are just as compelling as their larger siblings. Dwarf planets are defined by astronomers as bodies massive enough to be shaped by gravity into a round or nearly round shape, but they don’t have enough of their own gravitational muscle to clear their path of other objects as they orbit the Sun. In our solar system, dwarf planets are mostly found in the Kuiper Belt beyond Neptune; Pluto is the best-known example. But the largest object in the asteroid belt is the dwarf planet Ceres. Like Pluto, Ceres shows signs of active geology, including ice volcanoes.
The Kuiper Belt is a disc-shaped region beyond Neptune that extends from about 30 to 55 astronomical units -- that is, 30 to 55 times the distance from the Earth to the Sun. There may be hundreds of thousands of icy bodies and a trillion or more comets in this distant region of our solar system.
An artist's rendition of the New Horizons spacecraft passing by the Kuiper Belt Object MU69 in January 2019. Image credits: NASA/JHUAPL/SwRI
Besides Pluto, some of the mysterious worlds of the Kuiper Belt include Eris, Sedna, Quaoar, Makemake and Haumea. Like asteroids and comets, Kuiper Belt objects are time capsules, perhaps kept even more pristine in their icy realm.
This chart puts solar system distances in perspective. The scale bar is in astronomical units (AU), with each set distance beyond 1 AU representing 10 times the previous distance. One AU is the distance from the Sun to the Earth, which is about 93 million miles or 150 million kilometers. Neptune, the most distant planet from the Sun, is about 30 AU. Image credit: NASA/JPL-Caltech
The Oort Cloud is a group of icy bodies beginning roughly 186 billion miles (300 billion kilometers) away from the Sun. While the planets of our solar system orbit in a flat plane, the Oort Cloud is believed to be a giant spherical shell surrounding the Sun, planets and Kuiper Belt Objects. It is like a big, thick bubble around our solar system. The Oort Cloud’s icy bodies can be as large as mountains, and sometimes larger.
This dark, cold expanse is by far the solar system’s largest and most distant region. It extends all the way to about 100,000 AU (100,000 times the distance between Earth and the Sun) – a good portion of the way to the next star system. Comets from the Oort Cloud can have orbital periods of thousands or even millions of years. Consider this: At its current speed of about a million miles a day, our Voyager 1 spacecraft won’t reach the Oort Cloud for more than 300 years. It will then take about 30,000 years for the spacecraft to traverse the Oort Cloud, and exit our solar system entirely.
This animation shows our OSIRIS-REx spacecraft collecting a sample of the asteroid Bennu, which it is expected to do in 2020. Image credit: NASA/Goddard Space Flight Center
Fortunately, even though the Oort Cloud is extremely distant, most of the small bodies we’ve been discussing are more within reach. In fact, NASA and other space agencies have a whole flotilla of robotic spacecraft that are exploring these small worlds up close. Our mechanical emissaries act as our eyes and hands in deep space, searching for whatever clues these time capsules hold.
A partial roster of our current or recent missions to small, rocky destinations includes:
OSIRIS-REx – Now approaching the asteroid Bennu, where it will retrieve a sample in 2020 and return it to the Earth for close scrutiny.
New Horizons – Set to fly close to MU69 or “Ultima Thule,” an object a billion miles past Pluto in the Kuiper Belt on Jan. 1, 2019. When it does, MU69 will become the most distant object humans have ever seen up close.
Psyche – Planned for launch in 2022, the spacecraft will explore a metallic asteroid of the same name, which may be the ejected core of a baby planet that was destroyed long ago.
Lucy – Slated to investigate two separate groups of asteroids, called Trojans, that share the orbit of Jupiter – one group orbits ahead of the planet, while the other orbits behind. Lucy is planned to launch in 2021.
Dawn – Finishing up a successful seven-year mission orbiting planet-like worlds Ceres and Vesta in the asteroid belt.
Plus these missions from other space agencies:
The Japan Aerospace Exploration Agency (JAXA)’s Hayabusa2– Just landed a series of small probes on the surface of the asteroid Ryugu.
The European Space Agency (ESA)’s Rosetta – Orbited the comet 67P/Churyumov-Gerasimenko and dispatched a lander to its surface.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today is the day that our commercial partner, Orbital ATK, has set for the launch of its fourth contracted mission to the International Space Station. The Cygnus spacecraft will carry more than 7,000 pounds of science and research, crew supplies and vehicle hardware to the orbital laboratory.
This mission is the first Cygnus mission to utilize NASA’s Kennedy Space Center and launch from the Cape Canaveral Air Force base in Cape Canaveral, Florida.
The cargo will be launched inside the Orbital ATK Cygnus spacecraft using a United Launch Alliance Atlas V rocket.
But how does it get there? Is there someone on the ground controlling and directing it to the space station? Surprisingly, no. After launch, the Cygnus spacecraft is automated until it gets near the station. At that point, the robotic controllers use the CanadArm2 to reach out and grapple it (grab), and then berth (connect) it to the station.
In order to keep the thousands of pounds of supplies, science and hardware from moving during launch and in flight, the cargo is packed in bags and strapped to the walls.
The new experiments arriving to the space station will challenge and inspire future scientists and explorers. A few of the highlights are:
The Packed Bed Reactor Experiment (PBRE) - This experiment (image below) will study the behavior of gases and liquids when they flow simultaneously through a column filled with fixed porous media. The findings from this will be of interest in many chemical and biological processing systems as well as many geophysical applications.
BASS-M (Burning and Suppression of Solids – Milliken) - This experiment (image below) will evaluate flame retardant and/or resistant textiles as a mode of personal protection from fire-related hazards. Studying this in microgravity will aid in better designs for future textiles and benefit those who wear flame retardant and/or resistant protective apparel such as military personnel and civilian workers in the electrical and energy industries.
Space Automated Bioproduct Lab (SABL) - This equipment is a single locker-sized facility (image below) that will enable a wide variety of fundamental, applied and commercial life sciences research. It will also benefit K-16 education-based investigations aboard the space station. Research will be supported on microorganisms (bacteria, yeast, algae, fungi, viruses, etc.), animal cells and tissues and small plant and animal organisms.
Nodes Satellites – These satellites (image below) will be deployed from the space station to demonstrate new network capabilities critical to the operation of swarms of spacecraft. They will show the ability of multi-spacecraft swarms to receive and distribute ground commands, exchange information periodically and more.
Holiday Surprises - With the upcoming holidays the crew’s family has the opportunity to send Christmas gifts to their family members on the International Space Station.
The spacecraft will spend more than a month attached to the space station before it’s detached for re-entry into Earth’s atmosphere in January 2016, disposing of about 3,000 pounds of trash. It will disintegrate while entering the atmosphere.
Launch coverage begins at 4:30 p.m. EST on Thursday, Dec. 3 on NASA Television. Cygnus is set to lift off on the Atlas V at 5:55 p.m., the beginning of a 30-minute launch window, from Space Launch Complex 41.
In addition to launch coverage, a post-launch briefing will be held approximately two hours after launch. All briefings will air live on NASA TV.
UPDATE: Due to poor weather conditions, today’s launch has been scrubbed and moved to tomorrow at 5:33 p.m. EST. The forecast for tomorrow calls for a 30% chance of acceptable conditions at launch time. Continuous countdown coverage will be available on NASA Television starting at 4:30 p.m.
UPDATE 2: The uncrewed Cygnus cargo ship launched at 4:44 p.m. EST on Sunday, Dec. 6 on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida to begin its three-day journey to the orbiting laboratory.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Mars is a cold desert world, and is the fourth planet from the sun. It is half the diameter of Earth and has the same amount of dry land. Like Earth, Mars has seasons, polar ice caps, volcanoes, canyons and weather, but its atmosphere is too thin for liquid water to exist for long on the surface. There are signs of ancient floods on the Red Planet, but evidence for water now exists mainly in icy soil and thin clouds.
Earth has one, Mars has two…moons of course! Phobos (fear) and Deimos (panic) are the Red Planet’s two small moons. They are named after the horses that pulled the chariot of the Greek war god Ares, the counterpart to the Roman war god Mars.
The diameter of Mars is 4220 miles (6792 km). That means that the Red Planet is twice as big as the moon, but the Earth is twice as big as Mars.
Since Mars has less gravity than Earth, you would weigh 62% less than you do here on our home planet. Weigh yourself here on the Planets App. What’s the heaviest thing you’ve ever lifted? On Mars, you could have lifted more than twice that! Every 10 pounds on Earth only equals 4 pounds on the Red Planet. Find out why HERE.
Mass is the measurement of the amount of matter something contains. Mars is about 1/10th of the mass of Earth.
Mars and Earth are at their closest point to each other about every two years, with a distance of about 33 million miles between them at that time. The farthest that the Earth and Mars can be apart is: 249 million miles. This is due to the fact that both Mars and Earth have elliptical orbits and Mars’ orbit is tilted in comparison with the Earth’s. They also orbit the sun at different rates.
The temperature on Mars can be as high as 70 degrees Fahrenheit (20 degrees Celsius) or as low as about –225 degrees Fahrenheit (-153 degrees Celsius). How hot or cold the surface varies between day and night and among seasons. Mars is colder than Earth because it is farther from the sun.
You know that onions have layers, but did you know that Mars has layers too? Like Earth, Mars has a crust, a mantle and a core. The same stuff even makes up the planet layers: iron and silicate.
Ever wonder why it’s so hard launching things to space? It’s because the Earth has a log of gravity! Gravity makes things have weight, and the greater the gravity, the more it weights. On Mars, things weigh less because the gravity isn’t as strong.
Take a deep breath. What do you think you just breathed in? Mostly Nitrogen, about a fifth of that breath was Oxygen and the rest was a mix of other gases. To get the same amount of oxygen from one Earth breath, you’d have to take around 14,500 breaths on Mars! With the atmosphere being 100 times less dense, and being mostly carbon dioxide, there’s not a whole lot of oxygen to breathe in.
Mars has about 15% of Earth’s volume. To fill Earth’s volume, it would take over 6 Mars’ volumes.
For more fun Mars facts, visit HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’ve taken 10 of our top Instagram posts and put them here for your viewing pleasure. Now, your next 10 cell phone backgrounds can be found in one place.
10. Water on Mars
With 210,000 likes, this image is a favorite on Instagram. New findings from our Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars. Dark, narrow streaks on Martian slopes such as these at Hale Crater are inferred to be formed by seasonal flow of water on contemporary Mars. The streaks are roughly the length of a football field.
9. Smoke Ring for a Halo
With 210,000 likes, this image shined on Instagram. Two stars shine through the center of a ring of cascading dust in this image taken by the Hubble Space Telescope. The star system is named DI Cha, and while only two stars are apparent, it is actually a quadruple system containing two sets of binary stars. As this is a relatively young star system it is surrounded by dust.
8. Pluto’s Largest Moon, Charon
With 216,000 likes, a lot of people thought this image was interesting on Instagram. Our New Horizons spacecraft has returned the best color and the highest resolution images yet of Pluto's largest moon, Charon - and these pictures show a surprisingly complex and violent history. This high-resolution enhanced color view of Charon was captured just before closest approach on July 14. The image combines blue, red and infrared images; the colors are processed to best highlight the variation of surface properties across Charon.
7. Veil Nebula
With 220,000 likes, many people favorited this image on Instagram. This is the expanding remains of a massive star that exploded about 8,000 years ago. This view is a mosaic of six pictures from our Hubble Space Telescope of a small area roughly two light-years across, covering only a tiny fraction of the nebula's vast structure. This close-up look unveils wisps of gas, which are all that remain of what was once a star 20 times more massive than our sun.
6. Messier 94 Galaxy
With 234,000 likes, this image is a favorite on Instagram. This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away. Within the bright ring or starburst ring around Messier 94, new stars are forming at a high rate and many young, bright stars are present within it.
5. Solar ‘Pumpkin’
With 247,000 likes, many followers enjoyed this image on Instagram. This photo was posted on Halloween and shows active regions on the sun combined to look something like a jack-o-lantern’s face. The image was captured by NASA's Solar Dynamics Observatory in October 2014, which watches the sun at all times from its orbit in space.
4. Italy from the International Space Station
With 251,000 likes, this image captivated many of you on Instagram. Before drifting off to sleep, NASA astronaut Scott Kelly (@stationcdrkelly) captured this images from the International Space Station and wrote, " Day 180. Moonlight over Italy. #BuonaNotte Good night from @ISS! #YearInSpace.”
3. Cosmic Archaeological Dig
With 286,000 likes, this image dazzled many of you on Instagram. Peering deep into the Milky Way's crowded central hub of stars, researchers using our Hubble Space Telescope have uncovered for the first time a population of ancient white dwarfs -- smoldering remnants of once-vibrant stars that inhabited the core. Finding these relics at last can yield clues to how our galaxy was built, long before Earth and our sun formed. This image is a small section of Hubble's view of the dense collection of stars crammed together in the galactic bulge.
2. Super Blood Moon
With 310,000 likes, this image was very popular on Instagram. It shows the Super Blood Moon behind the Washington Monument on Sunday, Sept. 27, in Washington, DC. The combination of a supermoon and total lunar eclipse last occurred in 1982 and will not happen again until 2033.
1. Pluto
With 363,000 likes, this image is one of our most popular pictures on Instagram. The dwarf planet sent a love note back to Earth via our New Horizons spacecraft, which traveled more than 9 years and 3+ billion miles. This was the last and most detailed image of Pluto sent to Earth before the moment of closest approach, which was at 7:49 a.m. EDT Tuesday, July 14 - about 7,750 miles above the surface -- roughly the same distance from New York to Mumbai, India - making it the first-ever space mission to explore a world so far from Earth.
For more pictures like these, follow us on Instagram: https://www.instagram.com/nasa/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s Girl Scout Day! March 12, 2024, is the 112th birthday of Girl Scouts in the United States, and to celebrate, we’re sharing a lithograph of the Girl Scout alumnae who became NASA astronauts.
Girl Scouts learn to work together, build community, embrace adventurousness and curiosity, and develop leadership skills—all of which come in handy as an astronaut. For example, former Scouts Christina Koch and Jessica Meir worked together to make history on Oct. 18, 2019, when they performed the first all-woman spacewalk.
Pam Melroy is one of only two women to command a space shuttle and became NASA’s deputy administrator on June 21, 2021.
Nicole Mann was the first Indigenous woman from NASA to go to space when she launched to the International Space Station on Oct. 5, 2022. Currently, Loral O’Hara is aboard the space station, conducting science experiments and research.
Participating in thoughtful activities in leadership and STEM in Girl Scouts has empowered and inspired generations of girls to explore space, and we can’t wait to meet the future generations who will venture to the Moon and beyond.
Make sure to follow us on Tumblr for your regular dose of space!
In honor of our first-ever mission to the heart of the solar system, this week we’re delving into the life and times of this powerful yellow dwarf star.
Parker Solar Probe, our first mission to go to the sun, is named after Eugene Parker, an American astrophysicist who first theorized that the sun constantly sends out a flow of particles and energy called the solar wind. This historic mission will explore one of the last regions of the solar system to be visited by a spacecraft and help scientists unlock answers to questions they've been pondering for more than five decades.
Parker Solar Probe will swoop within 4 million miles of the sun's surface, facing heat and radiation like no spacecraft before it. The mission will provide new data on solar activity to help us better understand our home star and its activity - information that can improve forecasts of major space-weather events that could impact life on Earth.
The sun is the center of our solar system and makes up 99.8 percent of the mass of the entire solar system. If the sun were as tall as a typical front door, Earth would be about the size of a nickel.
Since the sun is not a solid body, different parts of the sun rotate at different rates. At the equator, the sun spins once about every 25 days, but at its poles the sun rotates once on its axis every 36 Earth days.
The sun is a star and a star doesn't have a solid surface. Rather, it's a ball of ionized gas 92.1% hydrogen (H2) and 7.8% helium (He) held together by its own gravity.
The sun isn't a planet, so it doesn't have any moons. But, the sun is orbited by eight planets, at least five dwarf planets, tens of thousands of asteroids, and hundreds of thousands to trillions of comets and icy bodies.
And we mean really, really hot. The temperature at the sun's core is about 27 million degrees Fahrenheit. However, its atmosphere, the corona, can reach temperatures of 3 million degrees. (That's as if it got hotter the farther away you got from a fire, instead of cooler!) Parker Solar Probe will help scientists solve the mystery of why the corona's temperature is so much higher than the surface.
The sun influences the entire solar system, so studying it helps us better understand the space weather that our astronauts and spacecraft travel through.
Better to admire from afar. Thanks to its hot, energetic mix of gases and plasma, the sun can't be home to living things. However, we can thank the sun for making life on Earth possible by providing the warmth and energy that supply Earth’s food chain.
Last but not least, don't forget that the first total solar eclipse to sweep across the U.S. from coast-to-coast since 1918 is happening on August 21, 2017. Our toolkit has you need to know to about it.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Start with our flagship accounts, where you can keep up with all the latest news and be a part of the conversation.
Twitter: https://twitter.com/nasa
Facebook: https://www.facebook.com/NASA/
Instagram: https://www.instagram.com/nasa/
Tumblr: http://nasa.tumblr.com/
Pinterest: https://www.pinterest.com/nasa/
Follow our Planetary Science Division to keep up with all the hardworking robots exploring the wild frontiers of our solar system.
Twitter: https://twitter.com/NASASolarSystem
Facebook: https://www.facebook.com/nasasolarsystem
Instagram: https://www.instagram.com/nasasolarsystem/
From the sun to Pluto and points in between, many NASA missions share their science on a variety of social platforms.
Twitter: https://www.nasa.gov/socialmedia#missions
Need some nostalgia in your feed? Learn the history of our exploration of our home planet, our solar system and beyond.
Twitter: https://twitter.com/NASAhistory
Facebook: https://www.facebook.com/NASAHistoryOffice
Find fun stuff for kids, parents and anyone who likes space and Earth science, including games, hands-on projects and fun facts.
Twitter: https://twitter.com/nasaspaceplace
Facebook: https://www.facebook.com/nasaspaceplace
Our photographers take their cameras to some interesting places around the planet.
Flickr: https://www.flickr.com/photos/nasahqphoto/
This is a great way to follow our missions that study the sun, Earth and space itself as elements of a interconnected system.
Twitter https://twitter.com/NASASunEarth
Want to know what it's like to work for us? Learn about the science and adventures of astronauts, scientists and engineers exploring space.
View the List: https://www.nasa.gov/socialmedia#people
Our planet is changing, and NASA Earth is on it, using the vantage point of space to increase our understanding of Earth and improve lives.
Twitter: https://twitter.com/nasaearth
Facebook: https://www.facebook.com/nasaearth
Visit us at: https://www.nasa.gov/socialmedia
for a listing of the agency’s current social media accounts.
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What is the most fascinating thing about black hole research for you, personally?
How does NASA technology benefit life on Earth? It probably has an impact in more ways than you think! Since 1976, our Spinoff program has profiled nearly 2,000 space technologies that have transformed into commercial products and services. In celebration of Spinoff’s 40th year of publication, we’ve assembled a collection of spinoffs that have had the greatest impact on Earth.
Take a look and see how many you utilize on a regular basis:
Digital Image Sensors
Whether you take pictures and videos with a DSLR camera or a cell phone, or even capture action on the go with a device like a GoPro Hero, you’re using NASA technology. The CMOS active pixel sensor in most digital image- capturing devices was invented when we needed to miniaturize cameras for interplanetary missions. This technology is also widely used in medical imaging and dental X-ray devices.
Enriched Baby Formula
While developing life support for Mars missions, NASA-funded researchers discovered a natural source for an omega-3 fatty acid previously found primarily in breast milk that plays a key role in infant development. The ingredient has since been added to more than 90% of infant formula on the market and is helping babies worldwide develop healthy brains, eyes and hearts.
NASTRAN Software
NASTRAN is a software developed by our engineers that performs structural analysis in the 1960s. Still popular today, it’s been used to help design everything from airplanes and cars to nuclear reactors and even Disney’s Space Mountain roller coaster.
Food Safety Standards
Looking to ensure the absolute safety of prepackaged foods for spaceflight, we partnered with the Pillsbury Company to create a new, systematic approach to quality control. Now known as Hazard Analysis and Critical Control Points (HACCP), the method has become an industry standard that benefits consumers worldwide by keeping food free from a wide range of potential chemical, physical and biological hazards.
Neutral Body Posture Specifications
What form does the human body naturally assume when all physical influences, including the pull of gravity, stop affecting it? We conducted research to find out using Skylab, America’s first space station, and later published specifications for what it called neutral body posture. The study has informed seat designs in everything from airplanes and office chairs to several models of Nissan automobiles.
Advanced Water Filtration
We recently discovered unexpected sources of water on the moon and Mars, but even so, space remains a desert for human explorers, and every drop must be recycled and reused. A nano filter devised to purify water in orbit is currently at work on Earth, in devices that supply water to remote villages as well as in a water bottle that lets hikers and adventurers stay hydrated using streams and lakes.
Swimsuit Designs
Wind-tunnel testing at our Langley Research Center played a key role in the development of Speedo’s LZR Racer swimsuit, proving which materials and seams best reduced drag as a swimmer cuts through the water. The swimsuit made a splash during its Olympic debut in 2008, as nearly every medal winner and world-record breaker wore the suit.
Air Purifier
When plants grow, they release a gas called ethylene that accelerates decay, hastening the wilting of flowers and the ripening of fruits and vegetables. Air circulation on Earth keeps the fumes from building up, but in the hermetically sealed environment of a spacecraft, ethylene poses a real challenge to the would-be space farmers. We funded the development of an ethylene scrubber for the International Space Station that has subsequently proved capable of purifying air on Earth from all kinds of pathogens and particulates. Grocery stores use it to keep produce fresh longer. It’s also been marketed for home use and has even been embraced by winemakers, who employ the scrubber to keep aging wine in barrels free from mold, mildew and musty odors.
Scratch-Resistant, UV-Reflective Lenses
Some of the earliest research into effective scratch-resistant coatings for prescription and sunglass lenses drew from work done at Ames Research Center on coatings for astronaut helmet visors and plastic membranes used in water purification systems. In the 1980s, we developed sunlight-filtering lenses to provide eye protection and enhance colors, and these lenses have found their way into sunglasses, ski goggles and safety masks for welders.
Dustbuster
An Apollo-era partnership with Black & Decker to build battery-operated tools for moon exploration and sample collection led to the development of a line of consumer, medical and industrial hand-held cordless tools. This includes the popular Dustbuster cordless vacuum.
To see even more of our spinoff technologies, visit: http://www.nasa.gov/offices/oct/40-years-of-nasa-spinoff
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Just like people here on Earth, astronauts get shipments too! But not in the typical sense. 8,200 pounds of cargo, including supplies and scientific experiments, is on its way to the International Space Station thanks to Northrop Grumman’s Cygnus cargo spacecraft. This ‘package’ launched out of Wallops Flight Facility on Nov. 2, 2019 at 9:59 a.m. EDT. The investigations aboard the rocket range from research into human control of robotics in space to reprocessing fibers for 3D printing. Get ready, because these new and exciting experiments are arriving soon!
Stars, planets and their molecules only make up 15% of our universe. The rest is dark matter. However, no one has actually ever been able to see or study it. The Alpha Magnetic Spectrometer -02 (AMS-02) has been searching for this substance since 2011. Northrop Grumman’s CRS-12 mission carries new parts for AMS-02 that will be added during a series of upcoming spacewalks so that the instrument can continue to help us shed light on this mystery.
Rovers operated by astronauts on the International Space Station will attempt to collect geological samples on Earth as part of an investigation called ANALOG-1. The samples, however, are not the important part of the study. Humans experience degraded sensorimotor functions in microgravity that could affect their operation of a robot. This study is designed to learn more about these issues, so that one day astronauts could use robots to perform research on planets they hope to walk on.
The AstroRad Vest is pretty rad. So rad, in fact, that it was sent up on the launch of Northrop Grumman’s CRS-12 mission. This vest intends to protect astronauts from harmful radiation in space. While going about normal activity on the space station, astronauts will wear AstroRad and make note of things like comfort over long periods of time. This will help researchers on Earth finalize the best design for future long duration missions.
The Made in Space Recycler (MIS) looks at how different materials on the International Space Station can be turned into filament used for 3D printing. This 3D printing is done right there in space, in the Additive Manufacturing Facility. Similar studies will be conducted on Earth so that comparisons can be made.
A collaboration between Automobili Lamborghini and the Houston Methodist Research Institute will be using NanoRacks-Craig-X FTP to test the performance of 3D-printed carbon fiber composites in the extreme environment of space. The study could lead to materials used both in space and on Earth. For example, the study may help improve the design of implantable devices for therapeutic drug delivery.
Everyone enjoys the aroma of fresh-baked cookies, even astronauts. On future long-duration space missions, fresh-baked food could have psychological and physiological benefits for crew members, providing them with a greater variety of more nutritious meals. The Zero-G Oven experiment examines heat transfer properties and the process of baking food in microgravity.
Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook.
If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts