Earlier this month, the southeastern United States was struck by Hurricane Michael. After the category 4 storm made landfall on Oct. 10, 2018, Hurricane Michael proceeded to knock out power for at least 2.5 million customers across Florida, Georgia, North Carolina, and Virginia.
In this data visualization, you can clearly see where the lights were taken out in Panama City, Florida. A team of our scientists from Goddard Space Flight Center processed and corrected the raw data to filter out stray light from the Moon, fires, airglow, and any other sources that are not electric lights. They also removed atmosphere interference from dust, haze, and clouds.
In the visualization above, you can see a natural view of the night lights—and a step of the filtering process in an effort to clean up some of the cloud cover. The line through the middle is the path Hurricane Michael took.
Although the damage was severe, tens of thousands of electric power industry workers from all over the country—and even Canada—worked together to restore power to the affected areas. Most of the power was restored by Oct. 15, but some people still need to wait a little longer for the power grids to be rebuilt. Read more here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Welcome back to Mindful Mondays! 🧘
Mondays are, famously, most people’s seventh favorite day of the week. And Mondays where everything is darker, longer, and colder than normal? Thanks, but no thanks.
But don’t panic; we’ve got something to help. It might be small, but it can make a big difference. Just ten minutes of mindfulness can go a long way, and taking some time out to sit down, slow down, and breathe can help center your thoughts and balance your mood. Sometimes, the best things in life really are free.
This year, we have teamed up with the good folks at @nasa. They want you to tune in and space out to relaxing music and ultra-high-definition visuals of the cosmos—from the surface of Mars.
Sounds good, right? Well, it gets better. Watch more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.
Why not give it a try? Just a few minutes this Monday morning can make all the difference, and we are bringing mindfulness straight to you.
🧘WATCH: Space Out with NASA: Martian Landscapes, 11/27 at 1pm EST🧘
Jupiter climbs higher in the southeast sky earlier in the evening this month, instead of having to wait until midnight for the planet to make an appearance. You can even see with just a pair of binoculars--even the four Galilean moon!
You can even see with just a pair of binoculars--even Io, Europa, Ganymede and Callisto--the four Galilean moons--as they change position each night!
Our moon appears near Jupiter in the nighttime sky from May 5-8.
The moon joins Venus and Mercury in the eastern sky just before sunrise on May 22 and May 23.
Later in the month, our moon pairs up with Mars in the west-northwest sky on May 26.
Saturn will be visible before midnight in early May, rising about 11:30 p.m. and by 9:30 p.m. later in the month. The best time to see Saturn Saturn is when it’s higher in the sky after midnight near the end of the month.
Using a telescope, you may be able to see Saturn’s cloud bands, or even a glimpse of Saturn’s north polar region--views that were beautifully captured by our Cassini spacecraft.
What do you see in Jupiter's hazy atmosphere?
Our NASA JunoCam mission captured this look at the planet’s thunderous northern region during the spacecraft’s close approach to the planet on Feb. 17, 2020.
Some notable features in this view are the long, thin bands that run through the center of the image from top to bottom. Juno has observed these long streaks since its first close pass by Jupiter in 2016.
Image Credits: Image data: NASA / JPL / SwRI / MSSS Image Processing: Citizen Scientist Eichstädt
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight.
Download it HERE
A comprehensive History of the F-16XL Experimental Prototype and its Role in our Flight Research.
Download it HERE
Selected National Advisory Committee for Aeronautics (NACA) Research Airplanes and Their Contributions to Flight.
Download it HERE
The huge Langley Full-Scale Tunnel building dominated the skyline of Langley Air Force Base for 81 years (1930–2011). Explore how the results of critical tests conducted within its massive test section contributed to many of the Nation's most important aeronautics and space programs.
Download it HERE
A New Twist in Flight Research describes the origins and design development of aeroelastic wing technology, its application to research aircraft, the flight-test program, and follow-on research and future applications.
Download it HERE
Developing & Flight Testing the Grumman X-29A Forward Swept Wing Research Aircraft.
Download it HERE
Robert T. Jones, the Oblique Wing, our AD-1 Demonstrator, and its Legacy.
Download it HERE
The fuel crisis of the 1970s threatened not only the airline industry but also the future of American prosperity itself. It also served as the genesis of technological ingenuity and innovation from a group of scientists and engineers at NASA, who initiated planning exercises to explore new fuel-saving technologies.
Download it HERE
X-15: Extending the Frontiers of Flight describes the genesis of the program, the design and construction of the aircraft, years of research flights and the experiments that flew aboard them.
Download it HERE
Delve into the story of the Ikhana, a remotely piloted vehicle used by NASA researchers to conduct Earth science research, which became an unexpected flying and imaging helper to emergency workers battling California wildfires.
Download it HERE
This first volume in a two-volume set includes case studies and essays on NACA-NASA research for contributions such as high-speed wing design, the area rule, rotary-wing aerodynamics research, sonic boom mitigation, hypersonic design, computational fluid dynamics, electronic flight control and environmentally friendly aircraft technology.
Download it HERE
Continue your journey into the world of NASA's Contributions to Aeronautics with case studies and essays on NACA-NASA research for contributions including wind shear and lightning research, flight operations, human factors, wind tunnels, composite structures, general aviation aircraft safety, supersonic cruise aircraft research and atmospheric icing.
Download it HERE
Interested in other free e-books on topics from space, science, research and more? Discover the other e-books HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Twenty-five years ago, an object roughly the size of an oven made space history when it plunged into the clouds of Jupiter, the largest planet in our solar system. On Dec. 7, 1995, the 750-pound Galileo probe became the first probe to enter the gas giant. Traveling at a blistering speed of 106,000 miles per hour, the probe’s protective heat shield experienced temperatures as hot as the Sun’s surface generated by friction during entry. As the probe parachuted through Jupiter’s dense atmosphere, its science instruments made measurements of the planet’s chemical and physical makeup. The probe collected data for nearly an hour before its signal was lost. Its data was transmitted to Earth via the Galileo spacecraft, an orbiter that carried the probe to Jupiter and stayed within contact during the encounter. Learn more about the mission.
The Galileo probe was managed by NASA’s Ames Research Center in California’s Silicon Valley.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When you went into space for the first time, what was it like? Were you nervous?
Today — June 20, 2024 — is the northern summer solstice. In the Northern Hemisphere, it marks the longest day of the year and the official start to summer.
We experience changing day lengths throughout the year because Earth rotates on a tilted axis as it goes around the Sun. This means during half of the year the North Pole tilts toward the Sun and in the other half it points away.
Solstices occur twice per year, when Earth’s poles are tilted closest to and farthest from the Sun.
The summer solstice is an important day for cultures around the world, especially at latitudes near the North Pole. Indigenous peoples have long marked the summer solstice with dancing and celebrations. Farmers have relied on the solstice to determine when to plant crops. The solstice’s timing also influenced the development of some calendars, like the ancient Roman calendar and the modern Gregorian calendar.
To mark the beginning of summer, here are four ways you can enjoy the Sun and the many wonders of space this season:
June is the month of the Strawberry Moon. This name originates with the Algonquin tribes. June is when strawberries are ready for harvest in the northeastern United States, where the Algonquin people traditionally live. The full Strawberry Moon this year happens tomorrow night — June 21, 2024. Grab a pair of binoculars to see it in detail.
During the Heliophysics Big Year, we are challenging you to participate in as many Sun-related activities as you can. This month’s theme is performance art. We’re looking at how various kinds of performance artists are moved by the Sun and its influence on Earth. For example, check out this Sun song!
Find out how to get involved here: https://science.nasa.gov/sun/helio-big-year/.
NASA has a ton of great space podcasts. Take a listen to Curious Universe’s Here Comes the Sun series to learn all about our closest star, from how it causes weather in space, to how you can help study it! For even more podcasts, visit our full list here: https://www.nasa.gov/podcasts.
The Sun sometimes has dark patches called sunspots. You can make your own sunspots with our favorite cookie recipe. Real sunspots aren’t made of chocolate, but on these sunspot cookies they are. And they're delicious.
Make sure to follow us on Tumblr for your regular dose of space!
With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Read on and click here to check out our previous Apollo FAQs.
The six crews that landed on the Moon brought back 842 pounds (382 kilograms) of rocks, sand and dust from the lunar surface. Each time, they were transferred to Johnson Space Center’s Lunar Receiving Laboratory, a building that also housed the astronauts during their three weeks of quarantine. Today the building now houses other science divisions, but the lunar samples are preserved in the Lunar Sample Receiving Laboratory.
Built in 1979, the laboratory is the chief repository of the Apollo samples.
From these pieces of the Moon we learned that its chemical makeup is similar to that of Earth’s, with some differences. Studying the samples has yielded clues to the origins of the solar system. In March of 2019, we announced that three cases of pristine Moon samples will be unsealed for the first time in 50 years so that we can take advantage of the improved technology that exists today!
Did you know you might not have to travel far to see a piece of the Moon up close? Visit our Find a Moon Rock page to find out where you can visit a piece of the Moon.
Astronaut food has come a long way since the days of Project Mercury, our first human spaceflight program that ran from 1958-1963. Back then, astronauts “enjoyed” food in cube form or squeezed out of tubes. Early astronaut food menus were designed less for flavor and more for nutritional value, but that eventually shifted as technology evolved. Astronauts today can enjoy whole foods like apples, pizza and even tacos.
Apollo crews were the first to have hot water, making it easier to rehydrate their foods and improve its taste. They were also the first to use a “spoon bowl,” a plastic container that was somewhat like eating out of a Ziploc bag with a spoon. Here’s an example of a day’s menu for a voyage to the Moon:
Breakfast: bacon squares, strawberry cubes and an orange drink.
Lunch: beef and potatoes, applesauce and a brownie.
Dinner: salmon salad, chicken and rice, sugar cookie cubes and a pineapple grapefruit drink.
As Neil Armstrong and Buzz Aldrin worked on the lunar surface, Command Module pilot Michael Collins orbited the Moon, alone, for the next 21.5 hours. On board he ran systems checks, made surface observations and communicated with Mission Control when there wasn’t a communications blackout. Blackouts happened every time Collins went behind the Moon. In 2009, Collins wrote this in response to a flurry of media questions about the 40th anniversary of the mission:
Q. Circling the lonely Moon by yourself, the loneliest person in the universe, weren't you lonely? A. No. Far from feeling lonely or abandoned, I feel very much a part of what is taking place on the lunar surface. I know that I would be a liar or a fool if I said that I have the best of the three Apollo 11 seats, but I can say with truth and equanimity that I am perfectly satisfied with the one I have. This venture has been structured for three men, and I consider my third to be as necessary as either of the other two.”
Artemis missions to the Moon will mark humanity’s first permanent presence on another world. The first woman and the next man to explore the lunar surface will land where nobody has ever attempted to land before -- on the Moon’s south pole where there are billions of tons of water ice that can be used for oxygen and fuel. We don’t know yet what astronauts will bring back from this unexplored territory, but we do know that they will return with hope and inspiration for the next generation of explorers: the Artemis generation. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Does the eclipse affect airplanes at all? Would pilots have to wear special glasses, and would people inside the airplane be told not to look out of the windows?
I don’t believe it should directly impact airplanes. We are looking at how the eclipse will affect radio communications which airplanes use, but that’s something we’ll learn with the data we collect during this eclipse. Pilots will need to be careful as always to not look directly at the Sun. If you are a lucky passenger on one of the flights that will cross the eclipse, make sure to bring your eclipse viewing glasses as you will need them to look at the Sun safely https://eclipse2017.nasa.gov/safety That would be an amazing opportunity to view the eclipse from a plane as you wouldn’t have to worry about cloud cover. You may also get a longer viewing experience if you are following the path of totality! In fact, some NASA scientist are going to be flying experiments on a couple of NASA planes! https://youtu.be/R0GNqlGNZkI?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi
Is your only job helping astronauts and satellites or does NASA do other thing too?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts