Jupiter climbs higher in the southeast sky earlier in the evening this month, instead of having to wait until midnight for the planet to make an appearance. You can even see with just a pair of binoculars--even the four Galilean moon!
You can even see with just a pair of binoculars--even Io, Europa, Ganymede and Callisto--the four Galilean moons--as they change position each night!
Our moon appears near Jupiter in the nighttime sky from May 5-8.
The moon joins Venus and Mercury in the eastern sky just before sunrise on May 22 and May 23.
Later in the month, our moon pairs up with Mars in the west-northwest sky on May 26.
Saturn will be visible before midnight in early May, rising about 11:30 p.m. and by 9:30 p.m. later in the month. The best time to see Saturn Saturn is when it’s higher in the sky after midnight near the end of the month.
Using a telescope, you may be able to see Saturn’s cloud bands, or even a glimpse of Saturn’s north polar region--views that were beautifully captured by our Cassini spacecraft.
Today is Small Business Saturday, an annual campaign that American Express started back in 2010 on the Saturday after Thanksgiving to support “local places that make our communities strong.”
The U.S. Senate has even taken note by passing a bipartisan resolution recognizing November 25, 2017 as Small Business Saturday: “an opportunity for all Americans to rally behind these local, independently-owned businesses and support the entrepreneurs who keep our families employed.”
Here at NASA, we look to promote and integrate small businesses across the country into the work we do to pioneer the future of space exploration, scientific discovery and aeronautics research.
Our Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) program seeks to fund the research, development and demonstration of innovative technologies that help address space exploration challenges and have significant potential for commercialization. In fiscal year 2017, our program awarded 567 contracts to 277 small businesses and 44 research institutions for a total of $173.5M that will enable our future missions into deep space and advancements in aviation and science, while also benefiting the U.S. economy. This year, the SBIR/STTR program’s Economic Impact Report indicated a $2.74 return for every dollar spent on awards—money well spent!
Our small business partners’ ideas have helped our work become more efficient and have advanced scientific knowledge on the International Space Station. Over 800 small businesses are contributing to the development of our Space Launch System rocket that will carry humans to deep space. SBIR/STTR program awardees are also helping the Curiosity Rover get around Mars and are even preparing the Mars 2020 Rover to search for signs of potential life on the Red Planet.
Small businesses are also contributing to scientific advances here on Earth like helping our satellites get a clearer picture of soil moisture in order to support water management, agriculture, and fire, flood and drought hazard monitoring.
In an effort to improve our understanding of the Arctic and Antarctica, a small business developed a cost-saving unmanned aircraft system that could withstand some of the coldest temperatures on the planet.
Does your small business have a big idea? Your next opportunity to join the SBIR/STTR program starts on January 11, 2018 when our latest solicitation opens.
We’ll be seeking new ideas from small businesses and research institutions for research, development and demonstration of innovative technologies. Go to www.nasa.sbir.gov to learn more.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We sit on the precipice of a golden age of space exploration — a renaissance of space science and technology. Every day, our missions send millions of bits of data to Earth, unraveling long-held mysteries about the universe, our solar system and even our own planet. But what makes it all possible?
Today we debut a new, limited edition podcast called “The Invisible Network.” It brings you a side of NASA you may have never seen or heard of before — oft overlooked technologies crucial to spaceflight and humanity’s ambitions among the stars.
Communications is the vital link between Earth and space. A collection of far-flung ground stations enabled the Apollo missions: our first steps on the Moon; the Voyager missions: our first brushes with interstellar space; and supported the earliest space and Earth science missions, expanding our knowledge of the stars and of ourselves.
Today, our communications networks are vastly different than those that supported Apollo. Tomorrow’s networks will be even more advanced.
“The Invisible Network” explores technological innovations guiding us into the future. These seemingly un-sexy feats of engineering will allow us to return to the Moon, journey to Mars and venture ever-further into the unknown.
Artist’s rendering of the upcoming Orion missions.
Our podcast’s title, "The Invisible Network," comes from author and former NASA engineer Sunny Tsiao’s book, “Read You Loud and Clear,” published in 2008. Tsiao notes that our communications and tracking programs are often described as “invisible.” Infrastructures, he writes, are seldom recognized, except when they fall short.
If our networks are invisible, perhaps it’s because they work so well.
We hope you’ll join us on our journey into The Invisible Network. Subscribe to the show and share us with a friend. For more information visit nasa.gov/invisible or nasa.gov/scan.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In September 2023, students at HBCUs participated in a hackathon at the National HBCU Week Conference, where they used NASA’s technologies to create solutions to problems that affect Black communities. The winning team, Team Airtek, proposed a nano-sensor array for medical diagnoses that would give students on HBCU campuses a non-invasive, non-intensive way to test themselves for precursors for diseases and illnesses like diabetes and COVID.
The hackathon they participated in is a modified version of the full NASA Minority University Research and Education Project Innovation and Tech Transfer Idea Competition (MITTIC) that takes place each fall and spring semester at NASA’s Johnson Space Center in Houston.
No matter what you’re studying, you can join the MITTIC competition and come up with new and innovative tech to help your community and the world.
MITTIC could be the beginning of your career pathway: Teams can go on exclusive NASA tours and network with industry experts. Show off your entrepreneurial skills and your team could earn money—and bragging rights.
Don’t wait too long to apply or to share with someone who should apply! The deadline for proposals is Oct. 16, 2023. Apply here: https://microgravityuniversity.jsc.nasa.gov/nasamittic.
How do you know if your solar eclipse glasses are legit?
Make sure to see that it has the ISO 12312-2 compliant and check that it’s from a trusted vendor. You can find a link here https://eclipse2017.nasa.gov/safety with more information and links to lists of trusted vendors.
In the 35 years since its launch aboard space shuttle Discovery, the Hubble Space Telescope has provided stunning views of galaxies millions of light years away. But the leaps in technology needed for its look into space has also provided benefits on the ground. Here are some of the technologies developed for Hubble that have improved life on Earth.
Charge-coupled device (CCD) sensors have been used in digital photography for decades, but Hubble’s Space Telescope Imaging Spectrograph required a far more sensitive CCD. This development resulted in improved image sensors for mammogram machines, helping doctors find and treat breast cancer.
In preparation for a repair mission to fix Hubble’s misshapen mirror, Goddard Space Flight Center required a way to accurately measure replacement parts. This resulted in a tool to detect mirror defects, which has since been used to develop a commercial 3D imaging system and a package detection device now used by all major shipping companies.
A computer scientist who helped design software for scheduling Hubble’s observations adapted it to assist with scheduling medical procedures. This software helps hospitals optimize constantly changing schedules for medical imaging and keep the high pace of emergency rooms going.
For Hubble’s main cameras to capture high-quality images of stars and galaxies, each of its filters had to block all but a specific range of wavelengths of light. The filters needed to capture the best data possible but also fit on one optical element. A company contracted to construct these filters used its experience on this project to create filters used in paint-matching devices for hardware stores, with multiple wavelengths evaluated by a single lens.
Make sure to follow us on Tumblr for your regular dose of space!
What’s your favorite part of the job?
You may remember that back in February, four crew members lived and worked inside our Human Research Exploration Analog (HERA). That crew, made up of 4 women, simulated a 715-day journey to a Near-Earth asteroid. Then in May, a second crew of 4 – this time, 4 men, launched on their simulated journey to that same asteroid. These 30 day missions help our researchers learn how isolation and close quarters affect individual and group behavior. Studies like this at our Johnson Space Center prepare us for long duration space missions, like a trip to an asteroid or even to Mars. We now have a third crew, living and working inside the HERA. This is the spacecraft’s 11th crew. The mission began on June 11, and will end on August 10.
The crew members are currently living inside this compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 30 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. The only people they will talk with regularly are mission control and each other.
The HERA XI crew is made up of 3 men and 1 woman selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including the same criteria for astronaut selection. The four would-be astronauts are:
• Tess Caswell
• Kyle Foster
• Daniel Surber
• Emmanuel Urquieta
What will they be doing?
The crew will test hardware prototypes to get “the bugs worked out” before they are used in off-Earth missions. They will conduct experiments involving plants, brine shrimp, and creating a piece of equipment with a 3D printer. After their visit to an asteroid, the crew will simulate the processing of soil and rocks they collected virtually. Researchers outside of the spacecraft will collect data regarding team dynamics, conflict resolution and the effects of extended isolation and confinement.
How real is a HERA mission?
When we set up an analog research investigation, we try to mimic as many of the spaceflight conditions as we can. This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way, depending on how far their simulated spacecraft is from Earth.
Obviously we are not in microgravity, so none of the effects of microgravity on the human or the vehicle can be tested. You can simulate isolation to a great degree – although the crew knows they are note really isolated from humanity, the communications delays and ban from social media help them to suspend reality. We emulate confinement and the stress that goes along with it.
Scientists and researchers use analogs like HERA to gather more data for comparison to data collected aboard the space station and from other analogs so they can draw conclusions needed for a real mission to deep space, and one day for a journey to Mars.
A few other details:
The crew follows a timeline that is similar to one used for the ISS crew.
They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercises.
They will be growing and taking care of plants and brine shrimp, which they will analyze and document.
Past HERA crew members wore a sensor that recorded heart rate, distance, motion and sound intensity. When crew members were working together, the sensor would also record their proximity as well, helping investigators learn about team cohesion.
Researchers also learned about how crew members react to stress by recording and analyzing verbal interactions and by analyzing “markers” in blood and saliva samples.
As with the 2 earlier missions this year, this mission will include 22 individual investigations across key human research elements. From psychological to physiological experiments, the crew members will help prepare us for future missions.
Want a full, 360 degree look at HERA? Check out and explore the inside of the habitat.
For more information on our Human Research Program, visit: www.nasa.gov/hrp.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Just two months from now, the moon will completely block the sun’s face, treating part of the US to a total solar eclipse.
Everyone in North America will have the chance to see an eclipse of some kind if skies are clear. Anyone within a 70-mile-wide swath of land — called the path of totality — that stretches from Oregon to South Carolina will have the chance to see a total eclipse.
Throughout the rest of the continent, including all 50 United States — and even in parts of South America, Africa, Europe, and Asia — the moon will partially obscure the sun, creating a partial eclipse.
Photo credit: NASA/Cruikshank
An eclipse is one of nature’s most awesome sights, but safety comes first! When any part of the sun’s surface is exposed, use proper eclipse glasses (not sunglasses) or an indirect viewing method, like a pinhole projector. In the path of totality, it’s safe to look directly at the eclipse ONLY during the brief moments of totality.
During a solar eclipse, the moon passes between the sun and Earth, casting a shadow down on Earth’s surface. We’ve been studying the moon with NASA’s Lunar Reconnaissance Orbiter, and its precise mapping helped NASA build the most accurate eclipse map to date.
During a total solar eclipse, the moon blocks out the sun’s bright face, revealing the otherwise hidden solar atmosphere, called the corona. The corona is one of the sun’s most interesting regions — key to understanding the root of space weather events that shape Earth’s space environment, and mysteries such as why the sun’s atmosphere is so much hotter than its surface far below.
This is the first time in nearly 100 years that a solar eclipse has crossed the United States from coast to coast. We’re taking advantage of this long eclipse path by collecting data that’s not usually accessible — including studying the solar corona, testing new corona-observing instruments, and tracking how our planet’s atmosphere, plants, and animals respond to the sudden loss of light and heat from the sun.
We’ll be studying the eclipse from the ground, from airplanes, with research balloons, and of course, from space.
Three of our sun-watchers — the Solar Dynamics Observatory, IRIS, and Hinode, a joint mission led by JAXA — will see a partial eclipse from space. Several of our Earth-observing satellites will use the eclipse to study Earth under uncommon conditions. For example, both Terra and DSCOVR, a joint mission led by NOAA, will capture images of the moon’s shadow from space. Our Lunar Reconnaissance Orbiter will also turn its instruments to face Earth and attempt to track the moon’s shadow as it moves across the planet.
There’s just two months to go until August 21, so make your plans now for the big day! No matter where you are, you can follow the eclipse as it crosses the country with live footage from NASA TV.
Learn more about the upcoming total solar eclipse — including where, when, and how to safely experience it — at eclipse2017.nasa.gov and follow along on Twitter @NASASun.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
You don't necessarily need fancy equipment to watch one of the sky's most awesome shows: a solar eclipse. With just a few simple supplies, you can make a pinhole camera that allows you to view the event safely and easily. Before you get started, remember: You should never look at the Sun directly without equipment that's specifically designed for solar viewing. Do not use standard binoculars or telescopes to watch the eclipse, as the light could severely damage your eyes. Sunglasses also do NOT count as protection when attempting to look directly at the Sun. Stay safe and still enjoy the Sun's stellar show by creating your very own pinhole camera. It's easy!
See another pinhole camera tutorial at https://www.jpl.nasa.gov/edu/learn/project/how-to-make-a-pinhole-camera/
Watch this and other eclipse videos on our YouTube channel: https://youtu.be/vWMf5rYDgpc?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi
A pinhole camera is just one of many viewing options. Learn more at https://eclipse2017.nasa.gov/safety
Music credit: Apple of My Eye by Frederik Wiedmann
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hello! @Astro_Jessica here ready to take your @nasa questions! @sxsw
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts