HBCU Students Make Moves With NASA Tech

Team Airtek, a group of nine smiling Black HBCU students, stand in front of a television and banner. The group is made up of five female students and four male students. On the television behind them is the name of their project, AIRTEK, with a logo that is a heart with a stylized electrocardiogram readout across it. Credit: NASA

HBCU Students Make Moves with NASA Tech

In September 2023, students at HBCUs participated in a hackathon at the National HBCU Week Conference, where they used NASA’s technologies to create solutions to problems that affect Black communities. The winning team, Team Airtek, proposed a nano-sensor array for medical diagnoses that would give students on HBCU campuses a non-invasive, non-intensive way to test themselves for precursors for diseases and illnesses like diabetes and COVID.

The hackathon they participated in is a modified version of the full NASA Minority University Research and Education Project Innovation and Tech Transfer Idea Competition (MITTIC) that takes place each fall and spring semester at NASA’s Johnson Space Center in Houston.

No matter what you’re studying, you can join the MITTIC competition and come up with new and innovative tech to help your community and the world.

MITTIC could be the beginning of your career pathway: Teams can go on exclusive NASA tours and network with industry experts. Show off your entrepreneurial skills and your team could earn money—and bragging rights.

Don’t wait too long to apply or to share with someone who should apply! The deadline for proposals is Oct. 16, 2023. Apply here: https://microgravityuniversity.jsc.nasa.gov/nasamittic.

More Posts from Nasa and Others

6 years ago

How Do You Like Your Turkey? Home-Cooked or Rocket-Launched?

image

It’s Thanksgiving, which means that you’re probably thinking about food right now. And here at NASA, we have to think about food very seriously when we explore space!

Astronauts Need to Eat, Too!

Like for you on Earth, nutrition plays a key role in maintaining the health and optimal performance of the astronauts. The Space Food Systems team is required to meet the nutritional needs of each crew member while adhering to the requirements of limited storage space, limited preparation options, and the difficulties of eating without gravity. 

Good food is necessary being comfortable on a mission a long way from home — especially for crewmembers who are on board for many months at a time. It’s important that the astronauts like the food they’re eating everyday, even given the preparation constraints!

Astronaut Food Has Not Always Been Appetizing

image

The early space programs were groundbreaking in a lot of ways — but not when it came to food. Like today, crumbs had to be prevented from scattering in microgravity and interfering with the instruments. Mercury astronauts had to endure bite-sized cubes, freeze-dried powders, and semi-liquids stuffed into aluminum tubes. The freeze-dried food were hard to rehydrate, squeezing the tubes was understandable unappetizing, and the food was generally considered to be, like spaceflight, a test of endurance.

However, over the years, packaging improved, which in turn enhanced food quality and choices. The Apollo astronauts were the first to have hot water, which made rehydrating foods easier and improved the food’s taste. And even the Space Shuttle astronauts had opportunities to design their own menus and choose foods commercially available on grocery store shelves. 

 The Wonders of Modern Space Food

image

Nowadays, astronauts on the International Space Station have the opportunity to sample a variety of foods and beverages prepared by the Space Food Systems team and decide which ones they prefer. They can add water to rehydratable products or eat products that are ready to eat off the shelf.

All the cooking and preparation has been done for them ahead of time because 1) they don’t have room for a kitchen to cook on the space station 2) they don’t have time to cook! The crewmembers are extremely occupied with station maintenance as well as scientific research on board, so meal times have to be streamlined as much as possible. 

Instead of going grocery shopping, bulk overwrap bags (BOBs!) are packed into cargo transfer bags for delivery to the space station. Meal based packaging allows the astronauts to have entrees, side dishes, snacks, and desserts to choose from. 

Taste in Space

image

The perception of taste changes in space. In microgravity, astronauts experience a fluid shift in their bodies, so the sensation is similar to eating with a headcold. The taste is muted so crewmembers prefer spicy foods or food with condiments to enhance the flavor. 

We Can’t Buy Groceries, But We Can Grow Food!

Growing plants aboard the space station provides a unique opportunity to study how plants adapt to microgravity. Plants may serve as a food source for long term missions, so it’s critical to understand how spaceflight affects plant growth. Plus, having fresh food available in space can have a positive impact on astronauts’ moods!

Since 2002, the Lada greenhouse has been used to perform almost continuous plant growth experiments on the station. We have grown a vast variety of plants, including thale cress, swiss chard, cabbage, lettuce, and mizuna. 

image

And in 2015, Expedition 44 members became the first American astronauts to eat plants grown in space when they munched on their harvest of Red Romaine. 

Earthlings Can Eat Space Food, Too

To give you a clear idea of how diverse the selection is for astronauts on board the space station, two earthlings gave the astronaut menu a try for a full week. Besides mentioning once that hot sauce was needed, they fared pretty well! (The shrimp cocktail was a favorite.)

Space Technology for Food on Earth

Not only has our space food improved, but so has our ability measure food production on Earth. Weather that is too dry, too wet, too hot, or too cool can strongly affect a farmer’s ability to grow crops. We collaborated with the United States Agency for International Development to create a system for crop yield prediction based on satellite data: the GEOGLAM Crop Monitor for Early Warning.

image

This map measures the health, or “greenness” of vegetation based on how much red or near-infrared light the leaves reflect. Healthy vegetation reflects more infrared light and less visible light than stressed vegetation. As you can see from the map, a severe drought spread across southern Mexico to Panama in June to August of this year. 

The Crop Monitor compiles different types of crop condition indicators — such as temperature, precipitation, and soil moisture — and shares them with 14 national and international partners to inform relief efforts.

Thanksgiving in Space 

Space food has certainly come a long way from semi-liquids squeezed into aluminum tubes! This year, Expedition 57 crewmembers Commander Alexander Gerst and Flight Engineer Serena M. Auñón-Chancellor are looking forward to enjoying a Thanksgiving meal that probably sounds pretty familiar to you: turkey, stuffing, candied yams, and even spicy pound cakes!

Hungry for More?

If you can’t get enough of space food, tune into this episode of “Houston, We Have a Podcast” and explore the delicious science of astronaut mealtime with Takiyah Sirmons. 

And whether you’re eating like a king or an astronaut, we wish everybody a happy and safe Thanksgiving!


Tags
5 years ago

Could you theoretically time travel through a black hole or other object with such intense mass?


Tags
6 years ago

@tinyscoop: What's the strangest experiment you've ever had to carry out up there?


Tags
4 years ago
NASA Spotlight: Astronaut Mike Hopkins

NASA Spotlight: Astronaut Mike Hopkins

Michael S. Hopkins was selected by NASA as an astronaut in 2009. The Missouri native is currently the Crew-1 mission commander for NASA’s next SpaceX launch to the International Space Station on Nov. 14, 2020. Hopkin’s Crew-1 mission will mark the first-ever crew rotation flight of a U.S. commercial spacecraft with astronauts on board, and it secures the U.S.’s ability to launch humans into space from American soil once again.  Previously, Hopkins was member of the Expedition 37/38 crew and has logged 166 days in space. During his stay aboard the station, he conducted two spacewalks totaling 12 hours and 58 minutes to change out a degraded pump module. He holds a Bachelor of Science in Aerospace Engineering from the University of Illinois and a Master of Science in Aerospace Engineering. 

He took some time from being a NASA astronaut to answer questions about his life and career! Enjoy:

What do you hope people think about when you launch?

I hope people are thinking about the fact that we’re starting a new era in human spaceflight. We’re re-opening human launch capability to U.S. soil again, but it’s not just that. We’re opening low-Earth orbit and the International Space Station with commercial companies. It’s a lot different than what we’ve done in the past. I hope people realize this isn’t just another launch – this is something a lot bigger. Hopefully it’s setting the stage, one of those first steps to getting us to the Moon and on to Mars.

image

You served in the U.S. Air Force as a flight test engineer. What does that entail?

First off, just like being an astronaut, it involves a lot of training when you first get started. I went to the U.S. Air Force Test Pilot School and spent a year in training and just learning how to be a flight test engineer. It was one of the most challenging years I’ve ever had, but also one of the more rewarding years. What it means afterwards is, you are basically testing new vehicles or new systems that are going on aircraft. You are testing them before they get handed over to the operational fleet and squadrons. You want to make sure that these capabilities are safe, and that they meet requirements. As a flight test engineer, I would help design the test. I would then get the opportunity to go and fly and execute the test and collect the data, then do the analysis, then write the final reports and give those conclusions on whether this particular vehicle or system was ready to go.

What is one piece of life advice you wish somebody had told you when you were younger? 

A common theme for me is to just have patience. Enjoy the ride along the way. I think I tend to be pretty high intensity on things and looking back, I think things happen when they’re supposed to happen, and sometimes that doesn’t necessarily agree with when you think it should happen. So for me, someone saying, “Just be patient Mike, it’s all going to happen when it’s supposed to,” would be really good advice.

image

Is there a particular science experiment you enjoyed working on the most while aboard the space station?

There’s a lot of experiments I had the opportunity to participate in, but the ones in particular I liked were ones where I got to interact directly with the folks that designed the experiment. One thing I enjoyed was a fluid experiment called Capillary Flow Experiment, or CFE. I got to work directly with the principal investigators on the ground as I executed that experiment. What made it nice was getting to hear their excitement as you were letting them know what was happening in real time and getting to hear their voices as they got excited about the results. It’s just a lot of fun.

image

Space is a risky business. Why do it?

I think most of us when we think about whatever it is we do, we don’t think of it in those terms. Space is risky, yes, but there’s a lot of other risky jobs out there. Whether it’s in the military, farming, jobs that involve heavy machinery or dangerous equipment… there’s all kinds of jobs that entail risk. Why do it? You do it because it appeals to you. You do it because it’s what gets you excited. It just feels right. We all have to go through a point in our lives where we figure out what we want to do and what we want to be. Sometimes we have to make decisions based on factors that maybe wouldn’t lead you down that choice if you had everything that you wanted, but in this particular case for me, it’s exactly where I want to be. From a risk standpoint, I don’t think of it in those terms.

image

Can you describe your crew mate Soichi Noguchi in one sentence?

There are many facets to Soichi Noguchi. I’m thinking about the movie Shrek. He has many layers! He’s very talented. He’s very well-thought. He’s very funny. He’s very caring. He’s very sensitive to other people’s needs and desires. He’s a dedicated family man. I could go on and on and on… so maybe like an onion – full of layers!

image

Star Trek or Star Wars?

I love them both. But can I say Firefly? There’s a TV series out there called Firefly. It lasted one season – kind of a space cowboy-type show. They did have a movie, Serenity, that was made as well. But anyway, I love both Star Wars and Star Trek. We’ve really enjoyed The Mandalorian. I mean who doesn’t love Baby Yoda right? It’s all fun.

How many times did you apply to be an astronaut? Did you learn anything on your last attempt? 

I tried four times over the course of 13 years. My first three attempts, I didn’t even have references checked or interviews or anything. Remember what we talked about earlier, about patience? For my fourth attempt, the fact is, it happened when it was supposed to happen. I didn’t realize it at the time. I would have loved to have been picked on my first attempt like anybody would think, but at the same time, because I didn’t get picked right away, my family had some amazing experiences throughout my Air Force career. That includes living in Canada, living overseas in Italy, and having an opportunity to work at the Pentagon. All of those helped shape me and grow my experience in ways that I think helped me be a better astronaut.

Can you share your favorite photo or video that you took in space?

One of my favorite pictures was a picture inside the station at night when all of the lights were out. You can see the glow of all of the little LEDs and computers and things that stay on even when you turn off the overhead lights. You see this glow on station. It’s really one of my favorite times because the picture doesn’t capture it all. I wish you could hear it as well. I like to think of the station in some sense as being alive. It’s at that time of night when everybody else is in their crew quarters in bed and the lights are out that you feel it. You feel the rhythm, you feel the heartbeat of the station, you see it in the glow of those lights – that heartbeat is what’s keeping you alive while you’re up there. That picture goes a small way of trying to capture that, but I think it’s a special time from up there.

image

What personal items did you decide to pack for launch and why? 

My wedding bands. I’m also taking up pilot wings for my son. He wants to be a pilot so if he succeeds with that, I’ll be able to give him his pilot wings. Last time, I took one of the Purple Hearts of a very close friend. He was a Marine in World War II who earned it after his service in the Pacific.

Thank you for your time, Mike, and good luck on your historic mission! Get to know a bit more about Mike and his Crew-1 crew mates Victor Glover, Soichi Noguchi, and Shannon Walker in the video above.

Watch LIVE launch coverage beginning at 3:30 p.m. EST on Nov. 14 HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
8 years ago

Celebrating 17 Years of NASA’s ‘Little Earth Satellite That Could’

The satellite was little— the size of a small refrigerator; it was only supposed to last one year and constructed and operated on a shoestring budget — yet it persisted.

After 17 years of operation, more than 1,500 research papers generated and 180,000 images captured, one of NASA’s pathfinder Earth satellites for testing new satellite technologies and concepts comes to an end on March 30, 2017. The Earth Observing-1 (EO-1) satellite will be powered off on that date but will not enter Earth’s atmosphere until 2056. 

“The Earth Observing-1 satellite is like The Little Engine That Could,” said Betsy Middleton, project scientist for the satellite at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

To celebrate the mission, we’re highlighting some of EO-1’s notable contributions to scientific research, spaceflight advancements and society. 

Scientists Learn More About Earth in Fine Detail

image

This animation shifts between an image showing flooding that occurred at the Arkansas and Mississippi rivers on January 12, 2016, captured by ALI and the rivers at normal levels on February 14, 2015 taken by the Operational Land Imager on Landsat 8. Credit: NASA’s Earth Observatory  

EO-1 carried the Advanced Land Imager that improved observations of forest cover, crops, coastal waters and small particles in the air known as aerosols. These improvements allowed researchers to identify smaller features on a local scale such as floods and landslides, which were especially useful for disaster support. 

image

On the night of Sept. 6, 2014, EO-1’s Hyperion observed the ongoing eruption at Holuhraun, Iceland as shown in the above image. Partially covered by clouds, this scene shows the extent of the lava flows that had been erupting.

EO-1’s other key instrument Hyperion provided an even greater level of detail in measuring the chemical constituents of Earth’s surface— akin to going from a black and white television of the 1940s to the high-definition color televisions of today. Hyperion’s level of sophistication doesn’t just show that plants are present, but can actually differentiate between corn, sorghum and many other species and ecosystems. Scientists and forest managers used these data, for instance, to explore remote terrain or to take stock of smoke and other chemical constituents during volcanic eruptions, and how they change through time.  

Crowdsourced Satellite Images of Disasters   

image

EO-1 was one of the first satellites to capture the scene after the World Trade Center attacks (pictured above) and the flooding in New Orleans after Hurricane Katrina. EO-1 also observed the toxic sludge in western Hungary in October 2010 and a large methane leak in southern California in October 2015. All of these scenes, which EO-1 provided quick, high-quality satellite imagery of the event, were covered in major news outlets. All of these scenes were also captured because of user requests. EO-1 had the capability of being user-driven, meaning the public could submit a request to the team for where they wanted the satellite to gather data along its fixed orbits. 

image

This image shows toxic sludge (red-orange streak) running west from an aluminum oxide plant in western Hungary after a wall broke allowing the sludge to spill from the factory on October 4, 2010. This image was taken by EO-1’s Advanced Land Imager on October 9, 2010. Credit: NASA’s Earth Observatory

 Artificial Intelligence Enables More Efficient Satellite Collaboration

image

This image of volcanic activity on Antarctica’s Mount Erebus on May 7, 2004 was taken by EO-1’s Advanced Land Imager after sensing thermal emissions from the volcano. The satellite gave itself new orders to take another image several hours later. Credit: Earth Observatory

EO-1 was among the first satellites to be programmed with a form of artificial intelligence software, allowing the satellite to make decisions based on the data it collects. For instance, if a scientist commanded EO-1 to take a picture of an erupting volcano, the software could decide to automatically take a follow-up image the next time it passed overhead. The Autonomous Sciencecraft Experiment software was developed by NASA’s Jet Propulsion Laboratory in Pasadena, California, and was uploaded to EO-1 three years after it launched. 

image

This image of Nassau Bahamas was taken by EO-1’s Advanced Land Imager on Oct 8, 2016, shortly after Hurricane Matthew hit. European, Japanese, Canadian, and Italian Space Agency members of the international coalition Committee on Earth Observation Satellites used their respective satellites to take images over the Caribbean islands and the U.S. Southeast coastline during Hurricane Matthew. Images were used to make flood maps in response to requests from disaster management agencies in Haiti, Dominican Republic, St. Martin, Bahamas, and the U.S. Federal Emergency Management Agency.

The artificial intelligence software also allows a group of satellites and ground sensors to communicate and coordinate with one another with no manual prompting. Called a "sensor web", if a satellite viewed an interesting scene, it could alert other satellites on the network to collect data during their passes over the same area. Together, they more quickly observe and downlink data from the scene than waiting for human orders. NASA's SensorWeb software reduces the wait time for data from weeks to days or hours, which is especially helpful for emergency responders. 

Laying the Foundation for ‘Formation Flying’

image

This animation shows the Rodeo-Chediski fire on July 7, 2002, that were taken one minute apart by Landsat 7 (burned areas in red) and EO-1 (burned areas in purple). This precision formation flying allowed EO-1 to directly compare the data and performance from its land imager and the Landsat 7 ETM+. EO-1’s most important technology goal was to test ALI for future Landsat satellites, which was accomplished on Landsat 8. Credit: NASA’s Goddard Space Flight Center

EO-1 was a pioneer in precision “formation flying” that kept it orbiting Earth exactly one minute behind the Landsat 7 satellite, already in orbit. Before EO-1, no satellite had flown that close to another satellite in the same orbit. EO-1 used formation flying to do a side-by-side comparison of its onboard ALI with Landsat 7’s operational imager to compare the products from the two imagers. Today, many satellites that measure different characteristics of Earth, including the five satellites in NASA's A Train, are positioned within seconds to minutes of one another to make observations on the surface near-simultaneously.

For more information on EO-1’s major accomplishments, visit: https://www.nasa.gov/feature/goddard/2017/celebrating-17-years-of-nasa-s-little-earth-satellite-that-could

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.


Tags
6 years ago
A Cluster Of Newborn Stars Herald Their Birth In This Interstellar Picture Obtained With Our Spitzer

A cluster of newborn stars herald their birth in this interstellar picture obtained with our Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped (and rose-colored) nebulosity. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus.

A recent census of the cluster reveals the presence of 130 young stars. The stars formed from a massive cloud of gas and dust that contains enough raw materials to create a thousand Sun-like stars. In a process that astronomers still poorly understand, fragments of this molecular cloud became so cold and dense that they collapsed into stars. Most stars in our Milky Way galaxy are thought to form in such clusters.

The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is about one quarter the size of the full moon.

As in any nursery, mayhem reigns. Within the astronomically brief period of a million years, the stars have managed to blow a large, irregular bubble in the molecular cloud that once enveloped them like a cocoon. The rosy pink hue is produced by glowing dust grains on the surface of the bubble being heated by the intense light from the embedded young stars. Upon absorbing ultraviolet and visible-light photons produced by the stars, the surrounding dust grains are heated and re-emit the energy at the longer infrared wavelengths observed by Spitzer. The reddish colors trace the distribution of molecular material thought to be rich in hydrocarbons.

The cold molecular cloud outside the bubble is mostly invisible in these images. However, three very young stars near the center of the image are sending jets of supersonic gas into the cloud. The impact of these jets heats molecules of carbon monoxide in the cloud, producing the intricate green nebulosity that forms the stem of the rosebud.

Not all stars are formed in clusters. Away from the main nebula and its young cluster are two smaller nebulae, to the left and bottom of the central 'rosebud,'each containing a stellar nursery with only a few young stars.

Astronomers believe that our own Sun may have formed billions of years ago in a cluster similar to this one. Once the radiation from new cluster stars destroys the surrounding placental material, the stars begin to slowly drift apart.

Additional information about the Spitzer Space Telescope is available at http://www.spitzer.caltech.edu.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago

Is the earth really as beautiful as they say from space?


Tags
5 years ago
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
Need Some Space? We’ve Got The Job! 👨‍🚀👩‍🚀⁣
image

Need some space? We’ve got the job! 👨‍🚀👩‍🚀⁣

We’re accepting applications March 2-31 for the next class of #Artemis Generation astronauts who will embark on missions to the Moon and Mars. Join our class of star sailors and find out if you have what it takes to #BeAnAstronaut! 

The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:

Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;

A completed doctor of medicine or doctor of osteopathic medicine degree;

Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.

Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.

More information here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What would happen if a Black hole would be near the earth? What would be the consequences to humans?


Tags
5 years ago

The Island Named After a Satellite

It is so small that you cannot see it on Google maps. It measures 25 by 45 meters (27 by 49 yards), about half the size of a football field. This barren bit of rock off the coast of Canada also has an unusual namesake: the Landsat 1 satellite. The small size is actually what made the island notable in 1973, when it was initially discovered. Well, that, and the polar bear trying to eat one of the surveyors.

Betty Fleming, a researcher with the Topographic Survey of Canada, was hunting for uncharted islands and rocks amidst data from the new Landsat 1 satellite. She was particularly interested in the new satellite's ability to find small features. Working with the Canadian Hydrographic Service, Fleming scanned images of the Labrador coast, an area that was poorly charted. About 20 kilometers (12 miles) offshore, the satellite detected a tiny, rocky island. Surveyors were sent to verify the existence of the island and encountered a hungry polar bear on the island. The surveyor quickly retreated. Eventually, the island became known as “Landsat Island,” after the satellite that discovered it. Watch the video to learn more about Betty Fleming and how Landsat Island was discovered by satellite and ground surveyors.

For more details about Landsat Island, read the full stories here:

The Island Named After a Satellite

The Unsung Woman Who Discovered an Unknown Island

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • andy202405
    andy202405 liked this · 1 month ago
  • minacottage
    minacottage reblogged this · 2 months ago
  • minacottage
    minacottage liked this · 2 months ago
  • strictly313
    strictly313 liked this · 4 months ago
  • bigkuntry1981
    bigkuntry1981 liked this · 4 months ago
  • afrotumble
    afrotumble reblogged this · 4 months ago
  • thesagittarianmind
    thesagittarianmind liked this · 9 months ago
  • accidentallyoccidental
    accidentallyoccidental reblogged this · 10 months ago
  • kosmik-signals
    kosmik-signals liked this · 1 year ago
  • afrotumble
    afrotumble reblogged this · 1 year ago
  • afrotumble
    afrotumble liked this · 1 year ago
  • stopbamboo
    stopbamboo liked this · 1 year ago
  • 90363462
    90363462 reblogged this · 1 year ago
  • xpersephonerose
    xpersephonerose liked this · 1 year ago
  • noxalynnthestarprincess
    noxalynnthestarprincess reblogged this · 1 year ago
  • noxalynnthestarprincess
    noxalynnthestarprincess liked this · 1 year ago
  • aphilosopherchair
    aphilosopherchair liked this · 1 year ago
  • xiaomao-ai-wo
    xiaomao-ai-wo reblogged this · 1 year ago
  • xiaomao-ai-wo
    xiaomao-ai-wo liked this · 1 year ago
  • llamadramama
    llamadramama liked this · 1 year ago
  • aarondouglas79-blog
    aarondouglas79-blog liked this · 1 year ago
  • victormanuelfuentescastro
    victormanuelfuentescastro reblogged this · 1 year ago
  • brightfut
    brightfut reblogged this · 1 year ago
  • princessjay
    princessjay liked this · 1 year ago
  • reneestjohn05
    reneestjohn05 reblogged this · 1 year ago
  • leastfavmutual
    leastfavmutual reblogged this · 1 year ago
  • thecusen44
    thecusen44 liked this · 1 year ago
  • inoahplace
    inoahplace reblogged this · 1 year ago
  • inoahplace
    inoahplace liked this · 1 year ago
  • squeackygee
    squeackygee reblogged this · 1 year ago
  • squeackygee
    squeackygee liked this · 1 year ago
  • cyarsk5230
    cyarsk5230 reblogged this · 1 year ago
  • dnicolegreen
    dnicolegreen liked this · 1 year ago
  • luv17
    luv17 liked this · 1 year ago
  • blee4k1
    blee4k1 liked this · 1 year ago
  • shinylovewolf
    shinylovewolf liked this · 1 year ago
  • jusmee2018
    jusmee2018 liked this · 1 year ago
  • comeandgo4
    comeandgo4 liked this · 1 year ago
  • shisuidagoatt
    shisuidagoatt reblogged this · 1 year ago
  • alexisanton
    alexisanton liked this · 1 year ago
  • kikikiriku
    kikikiriku liked this · 1 year ago
  • stacy80c
    stacy80c liked this · 1 year ago
  • mskay96
    mskay96 reblogged this · 1 year ago
  • mskay96
    mskay96 liked this · 1 year ago
  • agoodlookmedia
    agoodlookmedia liked this · 1 year ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags