Our Newest Solar Scope Is Ready For A Balloon Ride 🎈

Our Newest Solar Scope Is Ready for a Balloon Ride 🎈

Along with the Korea Astronomy and Space Science Institute, or KASI, we're getting ready to test a new way to see the Sun, high over the New Mexico desert.

A balloon — which looks a translucent white pumpkin, but large enough to hug a football field — will soon take flight, carrying a solar scope called BITSE. BITSE is a coronagraph, a special kind of telescope that blocks the bright face of the Sun to reveal its dimmer atmosphere, called the corona. BITSE stands for Balloon-borne Investigation of Temperature and Speed of Electrons in the corona.

image

Its goal? Explaining how the Sun spits out the solar wind, the stream of charged particles that blows constantly from the Sun. Scientists generally know it forms in the corona, but exactly how it does so is a mystery.

The solar wind is important because it’s the stuff that fills the space around Earth and all the other planets in our solar system. And, understanding how the solar wind works is key to predicting how solar eruptions travel. It’s a bit like a water slide: The way it flows determines how solar storms barrel through space. Sometimes, those storms crash into our planet’s magnetic field, sparking disturbances that can interfere with satellites and communications signals we use every day, like radio or GPS.

image

Right now, scientists and engineers are in Fort Sumner, New Mexico, preparing to fly BITSE up to the edge of the atmosphere. BITSE will take pictures of the corona, measuring the density, temperature and speed of negatively charged particles — called electrons — in the solar wind. Scientists need these three things to answer the question of how the solar wind forms.

One day, scientists hope to send an instrument like BITSE to space, where it can study the Sun day in and day out, and help us understand the powerful forces that push the solar wind out to speeds of 1 million miles per hour. BITSE’s balloon flight is an important step towards space, since it will help this team of scientists and engineers fine-tune their tech for future space-bound missions.  

image

Hours before sunrise, technicians from our Columbia Scientific Balloon Facility’s field site in Fort Sumner will ready the balloon for flight, partially filling the large plastic envelope with helium. The balloon is made of polyethylene — the same stuff grocery bags are made of — and is about as thick as a plastic sandwich bag, but much stronger. As the balloon rises higher into the sky, the gas in the balloon expands and the balloon grows to full size.

BITSE will float 22 miles over the desert. For at least six hours, it will drift, taking pictures of the Sun’s seething hot atmosphere. By the end of the day, it will have collected 40 feature-length movies’ worth of data.

image

BITSE’s journey to the sky began with an eclipse. Coronagraphs use a metal disk to mimic a total solar eclipse — but instead of the Moon sliding in between the Sun and Earth, the disk blocks the Sun’s face to reveal the dim corona. During the Aug. 21, 2017, total eclipse, our scientists tested key parts of this instrument in Madras, Oregon.

image

Now, the scientists are stepping out from the Moon’s shadow. A balloon will take BITSE up to the edge of the atmosphere. Balloons are a low-cost way to explore this part of the sky, allowing scientists to make better measurements and perform tests they can’t from the ground.

BITSE carries several important technologies. It’s built on one stage of lens, rather than three, like traditional coronagraphs. That means it’s designed more simply, and less likely to have a mechanical problem. And, it has a couple different sets of specialized filters that capture different kinds of light: polarized light — light waves that bob in certain directions — and specific wavelengths of light. The combination of these images provides scientists with information on the density, temperature and speed of electrons in the corona.

image

More than 22 miles over the ground, BITSE will fly high above birds, airplanes, weather and the blue sky itself. As the atmosphere thins out, there are less air particles to scatter light. That means at BITSE’s altitude, the sky is dimmer. These are good conditions for a coronagraph, whose goal is taking images of the dim corona. But even the upper atmosphere is brighter than space.

That’s why scientists are so eager to test BITSE on this balloon, and develop their instrument for a future space mission. The solar scope is designed to train its eyes on a slice of the corona that’s not well-studied, and key to solar wind formation. One day, a version of BITSE could do this from space, helping scientists gather new clues to the origins of the solar wind.  

image

At the end of BITSE’s flight, the crew at the Fort Sumner field site will send termination commands, kicking off a sequence that separates the instrument and balloon, deploys the instrument’s parachute, and punctures the balloon. An airplane circling overhead will keep watch over the balloon’s final moments, and relay BITSE’s location. At the end of its flight, far from where it started, the coronagraph will parachute to the ground. A crew will drive into the desert to recover both the balloon and BITSE at the end of the day.

For more information on how we use balloons for high-altitude science missions, visit: https://www.nasa.gov/scientificballoons

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

7 Sports Astronauts Love Without Gravity (Including Football)

Astronauts onboard the International Space Station spend most of their time doing science, exercising and maintaining the station. But they still have time to shoot hoops and toss around a football.

From chess to soccer, there’s a zero-gravity spin to everything.

1. Baseball

image
image
image

Baseball: America’s favorite pastime. JAXA astronaut, Satoshi Furukawa shows us how microgravity makes it possible to be a one-man team. It would be a lot harder to hit home runs if the players could jump that high to catch the ball.

2. Chess

image

Yes, it’s a sport, and one time NASA astronaut Greg Chamitoff (right) played Earth on a Velcro chess board. An elementary school chess team would pick moves that everyone could vote for online. The winning move would be Earth’s play, and then Chamitoff would respond. About every two days, a move would be made. But who won the historic Earth vs. Space match? Earth! Chamitoff resigned after Earth turned its pawn into a queen, but it was game well played.

3. Soccer

image
image

NASA astronaut Steve Swanson put a new spin on soccer by juggling the ball upside down. However, he might not have considered himself upside down. On the space station, up and down are relative.

4. Gymnastics

image

NASA astronauts usually sign off their videos with a zero-gravity somersault (either forwards or backwards). But astronauts are also proficient in handstands, flips and twists. The predecessor to the International Space Station, the Skylab, had the best space for the moves. The current space station is a bit tight in comparison.

5. Basketball

image

Objects that aren’t heavy don’t move very well on the space station. They kind of just float. It’s like Earth, but exaggerated. For example, on Earth a beach ball wouldn’t go as far as a basketball. The same is true in space, which is why playing with a basketball in space is more fun than playing with a beach ball.

6. Golf

image

People talk about hitting golf balls off skyscrapers, but what about off the International Space Station? While golf isn’t a normal occurrence on the station, it’s been there. One golf company even sent an experiment to the station to find out how to make better golf clubs.

7. Football

image

Zero gravity doesn’t make everything easier. Astronauts need to relearn how to throw things because their brains need to relearn how to interpret sensory information. A bowling ball on the space station no longer feels as heavy as a bowling ball on Earth. When astronauts first throw things on the space station, everything keeps going too high. That would put a wrench in your spiral for a couple of months. But once you adjust, the perfect spiral will just keep spiraling!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

All Eyes on the Sky for the August 21 Total Solar Eclipse

Just two months from now, the moon will completely block the sun’s face, treating part of the US to a total solar eclipse.

image

Everyone in North America will have the chance to see an eclipse of some kind if skies are clear. Anyone within a 70-mile-wide swath of land — called the path of totality — that stretches from Oregon to South Carolina will have the chance to see a total eclipse.

image

Throughout the rest of the continent, including all 50 United States — and even in parts of South America, Africa, Europe, and Asia — the moon will partially obscure the sun, creating a partial eclipse.

image

Photo credit: NASA/Cruikshank

An eclipse is one of nature’s most awesome sights, but safety comes first! When any part of the sun’s surface is exposed, use proper eclipse glasses (not sunglasses) or an indirect viewing method, like a pinhole projector. In the path of totality, it’s safe to look directly at the eclipse ONLY during the brief moments of totality.

image

During a solar eclipse, the moon passes between the sun and Earth, casting a shadow down on Earth’s surface. We’ve been studying the moon with NASA’s Lunar Reconnaissance Orbiter, and its precise mapping helped NASA build the most accurate eclipse map to date.

image

During a total solar eclipse, the moon blocks out the sun’s bright face, revealing the otherwise hidden solar atmosphere, called the corona. The corona is one of the sun’s most interesting regions — key to understanding the root of space weather events that shape Earth’s space environment, and mysteries such as why the sun’s atmosphere is so much hotter than its surface far below.

image

This is the first time in nearly 100 years that a solar eclipse has crossed the United States from coast to coast. We’re taking advantage of this long eclipse path by collecting data that’s not usually accessible — including studying the solar corona, testing new corona-observing instruments, and tracking how our planet’s atmosphere, plants, and animals respond to the sudden loss of light and heat from the sun.

We’ll be studying the eclipse from the ground, from airplanes, with research balloons, and of course, from space.

Three of our sun-watchers — the Solar Dynamics Observatory, IRIS, and Hinode, a joint mission led by JAXA — will see a partial eclipse from space. Several of our Earth-observing satellites will use the eclipse to study Earth under uncommon conditions. For example, both Terra and DSCOVR, a joint mission led by NOAA, will capture images of the moon’s shadow from space. Our Lunar Reconnaissance Orbiter will also turn its instruments to face Earth and attempt to track the moon’s shadow as it moves across the planet.

image

There’s just two months to go until August 21, so make your plans now for the big day! No matter where you are, you can follow the eclipse as it crosses the country with live footage from NASA TV.

Learn more about the upcoming total solar eclipse — including where, when, and how to safely experience it — at eclipse2017.nasa.gov and follow along on Twitter @NASASun.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Space Station Research: Observing Earth

Each month, we highlight a different research topic on the International Space Station. In April, our focus is how the space station provides a platform for studying the Earth.

image

You might wonder how a laboratory 250 miles above Earth could help us study and observe our home planet, but the space station actually gives us a unique view of the blue marble we call home.

The space station is part of a fleet of Earth remote-sensing platforms to develop a scientific understanding of Earth’s systems and its response to natural or human-induced changes and to improve prediction of climate, weather and natural hazards. Unlike automated remote-sensing platforms, the space station has a human crew, a low-orbit altitude and orbital parameters that provide variable views and lighting. Crew members have the ability to collect unscheduled data of an unfolding event, like severe weather, using handheld digital cameras.

image

The Cupola, seen above, is one of the many ways astronauts aboard the space station are able to observe the Earth. This panoramic control tower allows crew members to view and guide operations outside the station, like the station’s robotic arm.

image

The space station also has an inclined, sun-asynchronous orbit, which means that it travels over 90% of the inhabited surface of the Earth, and allows for the station to pass over ground locations at different times of the day and night. This perspective is different and complimentary to other orbiting satellites.

The space station is also home to a few Earth-observing instruments, including:

image

The ISS-RapidScat monitors ocean winds for climate research, weather prediction and hurricane science. This vantage point gives scientists the first near-global direct observations of how ocean winds can vary over the course of the day, while adding extra eyes in the tropics and mid-latitudes to track the formation and movement of tropical cyclones.

Space Station Research: Observing Earth

CATS (Cloud-Aerosol Transport System) is a laser instrument that measures clouds and airborne particles such as pollution, mineral dust and smoke. Improving cloud data allows scientists to create more accurate climate models, which in turn, will improve air quality forecasts and health risk alerts.

Space Station Research: Observing Earth

In late 2016, we will launch Stratospheric Aerosol and Gas Experiment III (SAGE III). This experiment will measure ozone and other gases in the atmosphere to help scientists assess how the ozone layer is recovering.

image

Want to observe the Earth from a similar vantage point? You can thanks to our High Definition Earth-Viewing System (HDEV). This experiment is mounted on the exterior of the space station and includes several commercial HD video cameras aimed at the Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Be Glad You Don’t Have to Dust in Space!

Throw open the windows and break out the feather duster, because spring is here and it’s time to do a little cleaning! Fortunately, no one has to tidy up the dust in space — because there’s a lot of it — around 100 tons rain down on Earth alone every day! And there’s even more swirling around the solar system, our Milky Way galaxy, other galaxies and the spaces in between. 

image

By studying the contents of the dust in your house — which can include skin cells, pet fur, furniture fibers, pollen, concrete particles and more — scientists learn a lot about your environment. In the same way, scientists can learn a lot by looking at space dust. Also called cosmic dust, a fleck of space dust is usually smaller than a grain of sand and is made of rock, ice, minerals or organic compounds. Scientists can study cosmic dust to learn about how it formed and how the universe recycles material.

image

“We are made of star-stuff,” Carl Sagan famously said. And it’s true! When a star dies, it sheds clouds of gas in strong stellar winds or in an explosion called a supernova. As the gas cools, minerals condense. Recent observations by our SOFIA mission suggest that in the wake of a supernova shockwave, dust may form more rapidly than scientists previously thought. These clouds of gas and dust created by the deaths of stars can sprawl across light-years and form new stars — like the Horsehead Nebula pictured above. Disks of dust and gas form around new stars and produce planets, moons, asteroids and comets. Here on Earth, some of that space dust eventually became included in living organisms — like us! Billions of years from now, our Sun will die too. The gas and dust it sheds will be recycled into new stars and planets and so on and so forth, in perpetuity!

image

Astronomers originally thought dust was a nuisance that got in the way of seeing the objects it surrounded. Dust scatters and absorbs light from stars and emits heat as infrared light. Once we started using infrared telescopes, we began to understand just how important dust is in the universe and how beautiful it can be. The picture of the Andromeda galaxy above was taken in the infrared by our Spitzer Space Telescope and reveals detailed spirals of dust that we can’t see in an optical image.

image

We also see plenty of dust right here in our solar system. Saturn’s rings are made of mostly ice particles and some dust, but scientists think that dust from meteorites may be darkening the rings over time. Jupiter also has faint dusty rings, although they’re hard to see — Voyager 1 only discovered them when it saw them backlit by the Sun. Astronomers think the rings formed when meteorite impacts on Jupiter’s moons released dust into orbit. The Juno spacecraft took the above picture in 2016 from inside the rings, looking out at the bright star Betelgeuse.

image

Copyright Josh Calcino, used with permission

And some space dust you can see from right here on Earth! In spring or autumn, right before sunrise or after sunset, you may be able to catch a glimpse of a hazy cone of light above the horizon created when the Sun’s rays are scattered by dust in the inner solar system. You can see an example in the image above, extending from above the tree on the horizon toward a spectacular view of the Milky Way. This phenomenon is called zodiacal light — and the dust that’s reflecting the sunlight probably comes from icy comets. Those comets were created by the same dusty disk that that formed our planets and eventually you and the dust under your couch!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Five Record-Setting Gamma-ray Bursts!

For 10 years, our Fermi Gamma-ray Space Telescope has scanned the sky for gamma-ray bursts (GRBs), the universe’s most luminous explosions!

image

Most GRBs occur when some types of massive stars run out of fuel and collapse to create new black holes. Others happen when two neutron stars, superdense remnants of stellar explosions, merge. Both kinds of cataclysmic events create jets of particles that move near the speed of light.

A new catalog of the highest-energy blasts provides scientists with fresh insights into how they work. Below are five record-setting events from the catalog that have helped scientists learn more about GRBs:

1. Super-short burst in Boötes!

image

The short burst 081102B, which occurred in the constellation Boötes on Nov. 2, 2008, is the briefest LAT-detected GRB, lasting just one-tenth of a second!

2. Long-lived burst!

image

Long-lived burst 160623A, spotted on June 23, 2016, in the constellation Cygnus, kept shining for almost 10 hours at LAT energies — the longest burst in the catalog.

For both long and short bursts, the high-energy gamma-ray emission lasts longer than the low-energy emission and happens later.

3. Highest energy gamma-rays!

image

The highest-energy individual gamma ray detected by Fermi’s LAT reached 94 billion electron volts (GeV) and traveled 3.8 billion light-years from the constellation Leo. It was emitted by 130427A, which also holds the record for the most gamma rays — 17 — with energies above 10 GeV.

4. In a constellation far, far away!

image

The farthest known GRB occurred 12.2 billion light-years away in the constellation Carina. Called 080916C, researchers calculate the explosion contained the power of 9,000 supernovae.

5. Probing the physics of our cosmos!

image

The known distance to 090510 helped test Einstein’s theory that the fabric of space-time is smooth and continuous. Fermi detected both a high-energy and a low-energy gamma ray at nearly the same instant. Having traveled the same distance in the same amount of time, they showed that all light, no matter its energy, moves at the same speed through the vacuum of space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
8 years ago

Take a dive between Saturn and its rings to see what our Cassini spacecraft saw during its first daring plunge on April 26! 

As Cassini made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. The video begins with a view of the vortex at Saturn's north pole, then heads past the outer boundary of the planet's hexagon-shaped jet stream and continues further southward. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

NASA’s New Planet Hunter Reveals a Sky Full of Stars

image

NASA’s newest planet-hunting satellite — the Transiting Exoplanet Survey Satellite, or TESS for short — has just released its first science image using all of its cameras to capture a huge swath of the sky! TESS is NASA’s next step in the search for planets outside our solar system, called exoplanets.

image

This spectacular image, the first released using all four of TESS’ cameras, shows the satellite’s full field of view. It captures parts of a dozen constellations, from Capricornus (the Sea Goat) to Pictor (the Painter’s Easel) — though it might be hard to find familiar constellations among all these stars! The image even includes the Large and Small Magellanic Clouds, our galaxy’s two largest companion galaxies.

The science community calls this image “first light,” but don’t let that fool you — TESS has been seeing light since it launched in April. A first light image like this is released to show off the first science-quality image taken after a mission starts collecting science data, highlighting a spacecraft’s capabilities.

image

TESS has been busy since it launched from NASA’s Kennedy Space Center in Cape Canaveral, Florida. First TESS needed to get into position, which required a push from the Moon. After nearly a month in space, the satellite passed about 5,000 miles from the Moon, whose gravity gave it the boost it needed to get into a special orbit that will keep it stable and maximize its view of the sky.

image

During those first few weeks, we also got a sneak peek of the sky through one of TESS’s four cameras. This test image captured over 200,000 stars in just two seconds! The spacecraft was pointed toward the constellation Centaurus when it snapped this picture. The bright star Beta Centauri is visible at the lower left edge, and the edge of the Coalsack Nebula is in the right upper corner.

image

After settling into orbit, scientists ran a number of checks on TESS, including testing its ability to collect a set of stable images over a prolonged period of time. TESS not only proved its ability to perform this task, it also got a surprise! A comet named C/2018 N1 passed through TESS’s cameras for about 17 hours in July.

The images show a treasure trove of cosmic curiosities. There are some stars whose brightness changes over time and asteroids visible as small moving white dots. You can even see an arc of stray light from Mars, which is located outside the image, moving across the screen.

image

Now that TESS has settled into orbit and has been thoroughly tested, it’s digging into its main mission of finding planets around other stars. How will it spot something as tiny and faint as a planet trillions of miles away? The trick is to look at the star!

So far, most of the exoplanets we’ve found were detected by looking for tiny dips in the brightness of their host stars. These dips are caused by the planet passing between us and its star – an event called a transit. Over its first two years, TESS will stare at 200,000 of the nearest and brightest stars in the sky to look for transits to identify stars with planets.

image

TESS will be building on the legacy of NASA’s Kepler spacecraft, which also used transits to find exoplanets. TESS’s target stars are about 10 times closer than Kepler’s, so they’ll tend to be brighter. Because they're closer and brighter, TESS’s target stars will be ideal candidates for follow-up studies with current and future observatories.

image

TESS is challenging over 200,000 of our stellar neighbors to a staring contest! Who knows what new amazing planets we’ll find?

The TESS mission is led by MIT and came together with the help of many different partners. You can keep up with the latest from the TESS mission by following mission updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago

Rocket Fuel in Her Blood: The Story of JoAnn Morgan

As the Apollo 11 mission lifted off on the Saturn V rocket, propelling humanity to the surface of the Moon for the very first time, members of the team inside Launch Control Center watched through a window.

The room was crowded with men in white shirts and dark ties, watching attentively as the rocket thrust into the sky. But among them sat one woman, seated to the left of center in the third row in the image below. In fact, this was the only woman in the launch firing room for the Apollo 11 liftoff.

image

This is JoAnn Morgan, the instrumentation controller for Apollo 11. Today, this is what Morgan is most known for. But her career at NASA spanned over 45 years, and she continued to break ceiling after ceiling for women involved with the space program.

“It was just meant to be for me to be in the launching business,” she says. “I’ve got rocket fuel in my blood.”

image

Morgan was inspired to join the human spaceflight program when Explorer 1 was launched into space in 1958, the first satellite to do so from the United States. Explorer 1 was instrumental in discovering what has become known as the Van Allen radiation belt. 

“I thought to myself, this is profound knowledge that concerns everyone on our planet,” she says. “This is an important discovery, and I want to be a part of this team. I was compelled to do it because of the new knowledge, the opportunity for new knowledge.”

image

The opportunity came when Morgan spotted an advertisement for two open positions with the Army Ballistic Missile Agency. The ad listed two Engineer’s Aide positions available for two students over the summer.

 “Thank God it said ‘students’ and not ‘boys’” says Morgan, “otherwise I wouldn’t have applied.”

After Morgan got the position, the program was quickly rolled into a brand-new space exploration agency called NASA. Dr. Kurt Debus, the first director of Kennedy Space Center (KSC), looked at Morgan’s coursework and provided Morgan with a pathway to certification. She was later certified as a Measurement and Instrumentation Engineer and a Data Systems Engineer.

image

There was a seemingly infinite amount of obstacles that Morgan was forced to overcome — everything from obscene phone calls at her station to needing a security guard to clear out the men’s only restroom.

“You have to realize that everywhere I went — if I went to a procedure review, if I went to a post-test critique, almost every single part of my daily work — I’d be the only woman in the room,” reflects Morgan. “I had a sense of loneliness in a way, but on the other side of that coin, I wanted to do the best job I could.”

image

To be the instrumentation controller in the launch room for the Apollo 11 liftoff was as huge as a deal as it sounds. For Morgan, to be present at that pivotal point in history was ground-breaking: “It was very validating. It absolutely made my career.”

image

Much like the Saturn V rocket, Morgan’s career took off. She was the first NASA woman to win a Sloan Fellowship, which she used to earn a Master of Science degree in management from Stanford University in California. When she returned to NASA, she became a divisions chief of the Computer Systems division.

image

From there, Morgan excelled in many other roles, including deputy of Expendable Launch Vehicles, director of Payload Projects Management and director of Safety and Mission Assurance. She was one of the last two people who verified the space shuttle was ready to launch and the first woman at KSC to serve in an executive position, associate director of the center.

image

To this day, Morgan is still one of the most decorated women at KSC. Her numerous awards and recognitions include an achievement award for her work during the activation of Apollo Launch Complex 39, four exceptional service medals and two outstanding leadership medals. In 1995, she was inducted into the Florida Women's Hall of Fame.

After serving as the director of External Relations and Business Development, she retired from NASA in August 2003.

image

Today, people are reflecting on the 50th anniversary of Apollo 11, looking back on photos of the only woman in the launch firing room and remembering Morgan as an emblem of inspiration for women in STEM. However, Morgan’s takeaway message is to not look at those photos in admiration, but in determination to see those photos “depart from our culture.”

“I look at that picture of the firing room where I’m the only woman. And I hope all the pictures now that show people working on the missions to the Moon and onto Mars, in rooms like Mission Control or Launch Control or wherever — that there will always be several women. I hope that photos like the ones I’m in don’t exist anymore.”

image

Follow Women@NASA for more stories like this one, and make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Is it fun working at NASA?


Tags
8 years ago

Hi ! What's your music playlist when you're on a mission ? :)

Luckily I have a lot of friends that already make amazing mixes for me already down here on Earth, so I’m counting on them to set me up well for my first mission.  My favorite genre is Indie rock, though I’m also a fan of jazz and classical music (I grew up playing the piano, flute, piccolo, and saxophone in various bands, wind symphonies, and jazz bands).  Music always succeeds in transforming my mood, I’m continually amazed at its power!  It will definitely be integral to my psychological well-being on a space mission.


Tags
Loading...
End of content
No more pages to load
  • stuzzi
    stuzzi liked this · 1 year ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
  • meliodude
    meliodude liked this · 5 years ago
  • shaman-0323
    shaman-0323 liked this · 5 years ago
  • agentemp4
    agentemp4 liked this · 5 years ago
  • pinkiepieaddict
    pinkiepieaddict reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags