Is it fun working at NASA?
Hopefully not a total dumb question but, YOUR ultimate goal as an astronaut?
In a dark conference room, a pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room, a flying saucer pumpkin hovered above Area 51 as a pumpkin alien wreaked havoc.
Suffice to say that when the scientists and engineers at our Jet Propulsion Laboratory in Pasadena, California, compete in a pumpkin-carving contest, the solar system's the limit. Now in its ninth year, the contest gives teams only one hour to carve (off the clock, on their lunch break), though they can prepare non-pumpkin materials — like backgrounds, sound effects and motorized parts — ahead of time.
Looking for more pumpkin fun? Check out the full gallery, here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our OSIRIS-REx spacecraft launches tomorrow, and will travel to a near-Earth asteroid, called Bennu. While there, it will collect a sample to bring back to Earth for study. But how exactly do we plan to get this spacecraft there and bring the sample back?
After launch, OSIRIS-REx will orbit the sun for a year, then use Earth’s gravitational field to assist it on its way to Bennu. In August 2018, the spacecraft’s approach to Bennu will begin.
The spacecraft will begin a detailed survey of Bennu two months after slowing to encounter the asteroid. The process will last over a year, and will include mapping of potential sample sites. After the selection of the final site, the spacecraft will briefly touch the surface of Bennu to retrieve a sample.
To collect a sample, the sampling arm will make contact with the surface of Bennu for about five seconds, during which it will release a burst of nitrogen gas. The procedure will cause rocks and surface material to be stirred up and captured in the sampler head. The spacecraft has enough nitrogen to allow three sampling attempts, to collect between 60 and 2000 grams (2-70 ounces).
In March 2021, the window for departure from the asteroid will open, and OSIRIS-REx will begin its return journey to Earth, arriving two and a half years later in September 2023.
The sample return capsule will separate from the spacecraft and enter the Earth’s atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range.
For two years after the sample return, the science team will catalog the sample and conduct analysis. We will also preserve at least 75% of the sample for further research by scientists worldwide, including future generations of scientists.
The OSIRIS-REx spacecraft is outfitted with some amazing instruments that will help complete the mission. Here’s a quick rundown:
The OCAMS Instrument Suite
PolyCam (center), MapCam (left) and SamCam (right) make up the camera suite on the spacecraft. These instruments are responsible for most of the visible light images that will be taken by the spacecraft.
OSIRIS-REx Laser Altimeter (OLA)
This instrument will provide a 3-D map of asteroid Bennu’s shape, which will allow scientists to understand the context of the asteroid’s geography and the sample location.
OSIRIS-REx Thermal Emission Spectrometer (OTES)
The OTES instrument will conduct surveys to map mineral and chemical abundances and will take the asteroid Bennu’s temperature.
OSIRIS-REx Visible and Infrared Spectrometer (OVIRS)
This instrument will measure visible and near infrared light from the asteroid. These observations could be used to identify water and organic materials.
Regolith X-Ray Imaging Spectrometer (REXIS)
REXIS can image X-ray emission from Bennu in order to provide an elemental abundance map of the asteroid’s surface.
Touch-and-Go Sample Arm Mechanism (TAGSAM)
This part of the spacecraft will be responsible for collecting a sample from Bennu’s surface.
OSIRIS-REx Talk Wednesday, Sept. 7 at noon EDT Join us for a discussion with representatives from the mission’s science and engineering teams. This talk will include an overview of the spacecraft and the science behind the mission. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Uncovering the Secrets of Asteroids Wednesday, Sept. 7 at 1 p.m. EDT During this panel, our scientists will discuss asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Thursday, Sept. 8 starting at 5:30 p.m. EDT Watch the liftoff of the United Launch Alliance’s (ULA) Atlas V rocket from Kennedy Space Center in Florida at 7:05 p.m.
Full coverage is available online starting at 4:30 p.m. Watch HERE
We will also stream the liftoff on Facebook Live starting at 6:50 p.m. EDT. Watch HERE
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Last year, Godzilla made its way across the Atlantic Ocean. No, it wasn’t a giant lizard monster, but a cloud of dust so large it could be seen from a million miles away in space.
The plume of dust blowing from the Sahara Desert broke records and was nicknamed the “Godzilla plume.”
This year, another massive dust plume is traveling across the Atlantic.
The transport of dust from the Sahara to the Americas isn’t unusual: every year, winds pick up more than 180 million tons of dust particles from the Sahara Desert, move them over the African continent and carry them all the way across the Atlantic Ocean, depositing much of the dust along the way.
What’s remarkable about the past two years is the size of the plumes. Last year, the “Godzilla plume” was the largest dust storm in our two decades of observations.
Although this year’s plume has yet to complete its journey across the Atlantic, dust plumes from the Sahara often have important impacts on the Americas.
So, why do the dust plumes matter?
Before the Sahara was a desert, it was a lakebed, where nutrients like phosphorous and iron were deposited before the lake dried up. As a result, winds pick up these nutrients in the dust plumes. Some of these nutrients get deposited in the Atlantic Ocean, feeding marine life – iron, for example, is critical for marine life. Phosphorus is also a much-needed nutrient that fertilizes vegetation in the Amazon rainforest. The amount of phosphorus deposited by Saharan dust plumes into the Amazon every year – around 22,000 tons – is roughly equivalent to the amount that gets removed from the rainforest’s soil by weather conditions. In other words, long term, the dust plumes provide an essential nutrient to the Amazon’s vegetation.
Both the dust plumes themselves and the conditions associated with them can also influence the formation of tropical storms during hurricane season. As climate change appears to be strengthening the strongest storms, understanding the relationship between dust plumes and hurricanes has only grown more important.
The dust plumes can carry microbes that can be deadly and can worsen air quality, creating potentially dangerous conditions for sensitive populations. The iron in the plumes can also kick off blooms of toxic algae off the coast of Florida that result from the increase in nutrients in the ocean.
What comes next for Saharan dust? We’re still looking into it!
Some research suggests dust plumes will intensify with higher temperatures and dryer conditions, creating more loose dust to be picked up. However, other research shows that rising ocean temperatures and changing wind speeds would result in more rainfall and vegetation in the desert, reducing how much dust blows across the Atlantic. Make sure to follow us on Tumblr for your regular dose of space!
Jupiter’s vibrant bands of light belts and dark regions appear primed for their close-up during our Juno spacecraft’s 10th flyby on Feb. 7. This flyby was a gravity science positioned pass. During orbits that highlight gravity experiments, Juno is positioned toward Earth in a way that allows both transmitters to downlink data in real-time to one of the antennas of our Deep Space Network. All of Juno’s science instruments and the spacecraft’s JunoCam were in operation during the flyby, collecting data that is now being returned to Earth. The science behind this beautifully choreographed image will help us understand the origin and structure of the planet beneath those lush, swirling clouds.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Butterfly Nebula
When you look at pictures of space, do you know what you’re actually seeing? A lot of the time the answer is dust!
HII region seen by Chandra X-ray Observatory
Clouds of dust drift through our galaxy. Telescopes can take pictures of these clouds when stars light them up. Who knew dust could be so beautiful? But it’s more than just pretty – we can learn a lot from it, too!
Stars like our Sun are born in dust clouds. Over time, leftover dust clumps together to help form planets. That makes it a little less dusty.
At certain times of the year, a band of sun-reflecting dust from the inner Solar System appears prominently just after sunset -- or just before sunrise -- and is called zodiacal light. Credit: Ruslan Merzlyakov/astrorms
But later, objects like comets and asteroids can create new dust by breaking up into tiny rocks. In our solar system, these rocky grains are called zodiacal dust. That’s because it’s mostly visible near the constellations of the zodiac. We can see the hazy glow it creates just after sunset or shortly before dawn sometimes, like in the picture above.
Around other stars, it’s called exozodiacal dust. Try saying that five times fast! It makes it hazy there too, so it can be hard to see distant planets.
Our Nancy Grace Roman Space Telescope will be really good at seeing how much of this dust is swirling around nearby stars. That will help future telescopes know the best places to look to find planets like Earth!
Roman will also see more distant objects. It will peer inside dust clouds where new stars are bursting into life. That will help our James Webb Space Telescope know where to look to find baby planets. Webb can zoom in for a more detailed look at these young worlds by seeing how they filter their host star’s light.
Roman will see huge patches of the sky – much bigger than our Hubble and Webb telescopes can see. These missions will team up to explore all kinds of cosmic mysteries!
Learn more about the exciting science Roman will investigate on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
#COVID19 led to changes in human activities around the globe. We can see some of these changes from space. Some bodies of water have run clearer, emissions of pollutants have temporarily declined, and transportation and shipment of goods have decreased.
Along with our partner agencies – ESA and JAXA – we’re making satellite data available on the COVID-19 Earth Observation Dashboard, where you can explore some of the changes we can see from space.
But it’s not just what we can see. When the pandemic began, NASA engineers sprang into action to build ventilators, oxygen hoods and more to help save lives.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Captured by our Perseverance Mars Rover, this is the first time a spacecraft on another planet has recorded the sounds of a separate spacecraft. In this audio track, Perseverance used its SuperCam microphone to listen to the Ingenuity helicopter on April 30, 2021 as it flew on Mars for the fourth time.
With Perseverance parked 262 feet (80 meters) from the helicopter’s takeoff and landing spot, the mission wasn’t sure if the microphone would pick up any sound of the flight. Even during flight when the helicopter’s blades are spinning at 2,537 rpm, the sound is greatly muffled by the thin Martian atmosphere. It is further obscured by Martian wind gusts during the initial moments of the flight. Listen closely, though, and the helicopter’s hum can be heard faintly above the sound of those winds.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
How do you guys help with climate change?
First piece of Orion’s Artemis III pressure vessel arrives at NASA’s Michoud Assembly Facility in New Orleans. https://blogs.nasa.gov/artemis/2020/08/25/first-piece-of-artemis-iii-orion-delivered-to-nasa/
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts