Cosmic Couples And Devastating Breakups

Cosmic Couples and Devastating Breakups

image

Relationships can be complicated — especially if you’re a pair of stars. Sometimes you start a downward spiral you just can’t get out of, eventually crash together and set off an explosion that can be seen 130 million light-years away.

For Valentine’s Day, we’re exploring the bonds between some of the universe’s peculiar pairs … as well as a few of their cataclysmic endings.

Stellar Couples

When you look at a star in the night sky, you may really be viewing two or more stars dancing around each other. Scientists estimate three or four out of every five Sun-like stars in the Milky Way have at least one partner. Take our old north star Thuban, for example. It’s a binary, or two-star, system in the constellation Draco.

image

Alpha Centauri, our nearest stellar neighbor, is actually a stellar triangle. Two Sun-like stars, Rigil Kentaurus and Toliman, form a pair (called Alpha Centauri AB) that orbit each other about every 80 years. Proxima Centauri is a remote red dwarf star caught in their gravitational pull even though it sits way far away from them (like over 300 times the distance between the Sun and Neptune).

image

Credit: ESO/Digitized Sky Survey 2/Davide De Martin/Mahdi Zamani

Sometimes, though, a stellar couple ends its relationship in a way that’s really disastrous for one of them. A black widow binary, for example, contains a low-mass star, called a brown dwarf, and a rapidly spinning, superdense stellar corpse called a pulsar. The pulsar generates intense radiation and particle winds that blow away the material of the other star over millions to billions of years.

image

Black Hole Beaus

In romance novels, an air of mystery is essential for any love interest, and black holes are some of the most mysterious phenomena in the universe. They also have very dramatic relationships with other objects around them!

Scientists have observed two types of black holes. Supermassive black holes are hundreds of thousands to billions of times our Sun’s mass. One of these monsters, called Sagittarius A* (the “*” is pronounced “star”), sits at the center of our own Milky Way. In a sense, our galaxy and its black hole are childhood sweethearts — they’ve been together for over 13 billion years! All the Milky-Way-size galaxies we’ve seen so far, including our neighbor Andromeda (pictured below), have supermassive black holes at their center!

image

These black-hole-galaxy power couples sometimes collide with other, similar pairs — kind of like a disastrous double date! We’ve never seen one of these events happen before, but scientists are starting to model them to get an idea of what the resulting fireworks might look like.

image

One of the most dramatic and fleeting relationships a supermassive black hole can have is with a star that strays too close. The black hole’s gravitational pull on the unfortunate star causes it to bulge on one side and break apart into a stream of gas, which is called a tidal disruption event.

image

The other type of black hole you often hear about is stellar-mass black holes, which are five to tens of times the Sun’s mass. Scientists think these are formed when a massive star goes supernova. If there are two massive stars in a binary, they can leave behind a pair of black holes that are tied together by their gravity. These new black holes spiral closer and closer until they crash together and create a larger black hole. The National Science Foundation’s LIGO project has detected many of these collisions through ripples in space-time called gravitational waves.

image

Credit: LIGO/T. Pyle

Here’s hoping your Valentine’s Day is more like a peacefully spiraling stellar binary and less like a tidal disruption! Learn how to have a safe relationship of your own with black holes here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

6 Ways NASA Technology Makes You Healthier

An important part of our mission is keeping astronauts strong and healthy during stays in space, but did you know that our technology also helps keep you healthy? And the origins of these space innovations aren’t always what you’d expect.

As we release the latest edition of NASA Spinoff, our yearly publication that celebrates all the ways NASA technology benefits us here on Earth, let’s look at some ways NASA is improving wellness for astronauts—and everyone else.

1.      Weightless weight-lifting

image

Without gravity to work against, astronauts lose bone and muscle mass in space. To fight it, they work out regularly. But to get them a good burn, we had to get creative. After all, pumping iron doesn’t do much good when the weights float.

The solution? Elastic resistance. Inventor Paul Francis was already working on a portable home gym that relied on spiral-shaped springs made of an elastic material. He thought the same idea would work on the space station and after additional development and extensive testing, we agreed.

Our Interim Resistive Exercise Device launched in 2000 to help keep astronauts fit. And Francis’ original plan took off too. The technology perfected for NASA is at the heart of the Bowflex Revolution as well as a new line of handheld devices called OYO DoubleFlex, both of which enable an intensive—and extensive—workout, right at home.

2.      Polymer coating keeps hearts beating

image

A key ingredient in a lifesaving treatment for many patients with congestive heart failure is made from a material a NASA researcher stumbled upon while working on a supersonic jet in the 1990s.

Today, a special kind of pacemaker that helps synchronize the left and right sides of the heart utilizes the unique substance known as LaRC-SI. The strong material can be cast extremely thin, which makes it easier to insert in the tightly twisted veins of the heart, and because it insulates so well, the pacemaker’s electric pulses go exactly where they should.

Since it was approved by the FDA in 2009, the device has been implanted hundreds of thousands of times.

 3.  Sutures strong enough for interplanetary transport

image

Many people mistakenly think we created Teflon. Not true: DuPont invented the unique polymer in 1938. But an innovative new way to use the material was developed to help us transport samples back from Mars and now aids in stitching up surgery patients.

Our scientists would love to get pristine Martian samples into our labs for more advanced testing. One complicating factor? The red dust makes it hard to get a clean seal on the sample container. That means the sample could get contaminated on its way back to Earth.

The team building the cannister had an idea, but they needed a material with very specific properties to make it work. They decided to use Polytetrafluoroethylene (that’s the scientific name for Teflon), which works really well in space.

The material we commonly recognize as Teflon starts as a powder, and to transform it into a nonstick coating, the powder gets processed a certain way. But process it differently, and you can get all kinds of different results.

For our Mars sample return cannister prototype, the powder was compressed at high pressures into a block, which was then forced through an extruder. (Imagine pressing playdough through a mold). It had never been done before, but the end result was durable, flexible and extremely thin: exactly what we needed.

And since the material can be implanted safely in the human body—it was also perfect as super strong sutures for after surgery.

4.      Plant pots that clean the air

image

It may surprise you, but the most polluted air you breathe is likely the air inside your home and office. That’s especially true these days with energy-efficient insulation: the hot air gets sealed in, but so do any toxins coming off the paint, furniture, cooking gas, etc.

This was a problem NASA began worrying about decades ago, when we started planning for long duration space missions. After all, there’s no environment more insulated than a spaceship flying through the vacuum of space.

On Earth, plants are a big part of the “life support” system cleaning our air, so we wondered if they could do the same indoors or in space.

The results from extensive research surprised us: we learned the most important air scrubbing happens not through a plant’s leaves, but around its roots. And now you can get the cleanest air out of your houseplants by using a special plant pot, available online, developed with that finding in mind: it maximizes air flow through the soil, multiplying the plant’s ability to clean your air.

5.      Gas sensor detects pollution from overhead

image

Although this next innovation wasn’t created with pollution in mind, it’s now helping keep an eye on one of the biggest greenhouse gasses: methane.

We created this tiny methane “sniffer” to help us look for signs of life on Mars. On Earth, the biggest source of methane is actually bacteria, so when one of our telescopes on the ground caught a glimpse of the gas on Mars, we knew we needed to take a closer look.

We sent this new, extremely sensitive sensor on the Curiosity Rover, but we knew it could also be put to good use here on our home planet.  We adapted it, and today it gets mounted on drones and cars to quickly and accurately detect gas leaks and methane emissions from pipelines, oil wells and more.

The sensor can also be used to better study emissions from swamps and other natural sources, to better understand and perhaps mitigate their effects on climate change.

6.      DNA “paint” highlights cellular damage

image

There’s been a lot of news lately about DNA editing: can genes be changed safely to make people healthier? Should they be?

As scientists and ethicists tackle these big questions, they need to be sure they know exactly what’s changing in the genome when they use the editing tools that already exist.

Well, thanks to a tool NASA helped create, we can actually highlight any abnormalities in the genetic code with special fluorescent “paint.”

But that’s not all the “paint” can do. We actually created it to better understand any genetic damage our astronauts incurred during their time in space, where radiation levels are far higher than on Earth. Down here, it could help do the same. For example, it can help doctors select the right cancer treatment by identifying the exact mutation in cancer cells.

You can learn more about all these innovations, and dozens more, in the 2019 edition of NASA Spinoff. Read it online or request a limited quantity print copy and we’ll mail it to you!


Tags
6 years ago

Squaring Off with Icebergs with Operation IceBridge

image

From onboard a NASA research plane, Operation IceBridge is flying survey flights over Antarctica, studying how the frozen continent is changing. The average Antarctic flight is 11-12 hours long; with all that time in the air, the science team sees some striking and interesting views, including two rectangular-looking icebergs off Antarctica’s Larsen C ice shelf.

They're both tabular icebergs, which are relatively common in the Antarctic. They form by breaking off ice shelves -- when they are “fresh,” they have flat tops and angular lines and edges because they haven't been rounded or broken by wind and waves.

Operation IceBridge is one part of NASA's exploration of the cryosphere -- Earth's icy reaches. Follow along as we explore the frozen regions of our home planet.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Is there a pot of gold at the end of a green aurora? Not sure, but these dancing green lights provide a spectacular view fitting for the St. Patrick’s Day holiday. 

This stunning aurora was captured by NASA astronaut Jeff Williams during his 2016 mission on the International Space Station. 

Even though auroras are best seen at night, they are actually caused by the sun. The sun sends us more than just heat a light…it sends lots of other energy and small particles toward Earth. The protective magnetic field around Earth shields us from most of the energy and particles. Sometimes, the particles interact with gases in our atmosphere resulting in beautiful displays of light in the sky. Oxygen gives off green and red light, while nitrogen glows blue and purple.

Happy St. Patrick’s Day!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

How Exactly Do We Plan to Bring an Asteroid Sample Back to Earth?

Our OSIRIS-REx spacecraft launches tomorrow, and will travel to a near-Earth asteroid, called Bennu. While there, it will collect a sample to bring back to Earth for study. But how exactly do we plan to get this spacecraft there and bring the sample back?

image

Here’s the plan:

After launch, OSIRIS-REx will orbit the sun for a year, then use Earth’s gravitational field to assist it on its way to Bennu. In August 2018, the spacecraft’s approach to Bennu will begin.

image

The spacecraft will begin a detailed survey of Bennu two months after slowing to encounter the asteroid. The process will last over a year, and will include mapping of potential sample sites. After the selection of the final site, the spacecraft will briefly touch the surface of Bennu to retrieve a sample.

image

To collect a sample, the sampling arm will make contact with the surface of Bennu for about five seconds, during which it will release a burst of nitrogen gas. The procedure will cause rocks and surface material to be stirred up and captured in the sampler head. The spacecraft has enough nitrogen to allow three sampling attempts, to collect between 60 and 2000 grams (2-70 ounces).

image

In March 2021, the window for departure from the asteroid will open, and OSIRIS-REx will begin its return journey to Earth, arriving two and a half years later in September 2023.

image

The sample return capsule will separate from the spacecraft and enter the Earth’s atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range.

image

For two years after the sample return, the science team will catalog the sample and conduct analysis. We will also preserve at least 75% of the sample for further research by scientists worldwide, including future generations of scientists.

The Spacecraft

image

The OSIRIS-REx spacecraft is outfitted with some amazing instruments that will help complete the mission. Here’s a quick rundown:

The OCAMS Instrument Suite

image

PolyCam (center), MapCam (left) and SamCam (right) make up the camera suite on the spacecraft. These instruments are responsible for most of the visible light images that will be taken by the spacecraft.

OSIRIS-REx Laser Altimeter (OLA)

image

This instrument will provide a 3-D map of asteroid Bennu’s shape, which will allow scientists to understand the context of the asteroid’s geography and the sample location.

OSIRIS-REx Thermal Emission Spectrometer (OTES)

image

The OTES instrument will conduct surveys to map mineral and chemical abundances and will take the asteroid Bennu’s temperature.

OSIRIS-REx Visible and Infrared Spectrometer (OVIRS)

image

This instrument will measure visible and near infrared light from the asteroid. These observations could be used to identify water and organic materials.

Regolith X-Ray Imaging Spectrometer (REXIS)

image

REXIS can image X-ray emission from Bennu in order to provide an elemental abundance map of the asteroid’s surface.

Touch-and-Go Sample Arm Mechanism (TAGSAM)

image

This part of the spacecraft will be responsible for collecting a sample from Bennu’s surface.

Watch Launch and More!

image

OSIRIS-REx Talk Wednesday, Sept. 7 at noon EDT Join us for a discussion with representatives from the mission’s science and engineering teams. This talk will include an overview of the spacecraft and the science behind the mission.  Social media followers can ask questions during this event by using #askNASA. Watch HERE. 

Uncovering the Secrets of Asteroids Wednesday, Sept. 7 at 1 p.m. EDT During this panel, our scientists will discuss asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. Social media followers can ask questions during this event by using #askNASA. Watch HERE. 

LAUNCH COVERAGE!

Thursday, Sept. 8 starting at 5:30 p.m. EDT Watch the liftoff of the United Launch Alliance’s (ULA) Atlas V rocket from Kennedy Space Center in Florida at 7:05 p.m. 

Full coverage is available online starting at 4:30 p.m. Watch HERE

We will also stream the liftoff on Facebook Live starting at 6:50 p.m. EDT. Watch HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

10 Questions About the 2017 Astronaut Class

We will select between eight and 14 new astronaut candidates from among a record-breaking applicant class of more than 18,300, almost three times the number of applications the agency received in 2012 for the recent astronaut class, and far surpassing the previous record of 8,000 in 1978.

10 Questions About The 2017 Astronaut Class

The candidates will be announced at an event at our Johnson Space Center in Houston, Texas at 2 p.m. EDT on June 7. You can find more information on how to watch the announcement HERE.

1. What are the qualifications for becoming an astronaut?

10 Questions About The 2017 Astronaut Class

Applicants must meet the following minimum requirements before submitting an application.

Bachelor’s degree from an accredited institution in engineering, biological science, physical science, computer science or mathematics. 

Degree must be followed by at least 3 years of related, progressively responsible, professional experience or at least 1,000 hours of pilot-in-command time in jet aircraft

Ability to pass the NASA Astronaut physical.

For more information, visit: https://astronauts.nasa.gov/content/faq.htm

2. What have selections looked like in the past?

10 Questions About The 2017 Astronaut Class

There have been 22 classes of astronauts selected from the original “Mercury Seven” in 1959 to the most recent 2017 class. Other notable classes include:

The fourth class in 1965 known as “The Scientists: because academic experience was favored over pilot skills. 

The eighth class in 1978 was a huge step forward for diversity, featuring the first female, African American and Asian American selections.

The 16th class in 1996 was the largest class yet with 44 members – 35 U.S. astronauts and 9 international astronauts. They were selected for the frequent Space Shuttle flights and the anticipated need for International Space Station crewmembers.

The 21st class in 2013 was the first class to have 50/50 gender split with 4 female members and 4 male members.

3. What vehicles will they fly in?

10 Questions About The 2017 Astronaut Class

They could be assigned on any of four different spacecraft: the International Space Station, our Orion spacecraft for deep space exploration or one of two American-made commercial crew spacecraft currently in development – Boeing’s CST-199 Starliner or the SpaceX Crew Dragon.

4. Where will they go?

10 Questions About The 2017 Astronaut Class

These astronauts will be part of expanded crews aboard the space station that will significantly increase the crew time available to conduct the important research and technology demonstrations that are advancing our knowledge for missions farther into space than humans have gone before, while also returning benefits to Earth. They will also be candidates for missions beyond the moon and into deep space aboard our Orion spacecraft on flights that help pave the way for missions to Mars.

5. What will their roles be?

10 Questions About The 2017 Astronaut Class

After completing two years of general training, these astronaut candidates will be considered full astronauts, eligible to be assigned spaceflight missions. While they wait for their turn, they will be given duties within the Astronaut Office at Johnson Space Center. Technical duties can range from supporting current missions in roles such as CAPCOM in Mission Control, to advising on the development of future spacecraft.

6. What will their training look like?

10 Questions About The 2017 Astronaut Class

The first two years of astronaut candidate training will focus on the basic skills astronauts need. They’ll practice for spacewalks in Johnson’s 60-foot deep swimming pool, the Neutral Buoyancy Lab, which requires SCUBA certification. They’ll also simulate bringing visiting spacecraft in for a berthing to the space station using its robotic arm, Canadarm2, master the ins and outs of space station system and learn Russian. 

10 Questions About The 2017 Astronaut Class

And, whether they have previous experience piloting an aircraft of not, they’ll learn to fly our fleet of T-38s. In addition, they’ll perfect their expeditionary skills, such as leadership and fellowship, through activities like survival training and geology treks.

7.  What kinds of partners will they work with?

10 Questions About The 2017 Astronaut Class

They will join a team that supports missions going on at many different NASA centers across the country, but they’ll also interact with commercial partners developing spaceflight hardware. In addition, they will work with our international partners around the globe: ESA (the European Space Agency, the Canadian Space Agency, the Japan Aerospace Exploration Agency and the Russian space agency, Roscosmos.

8. How does the selection process work?

10 Questions About The 2017 Astronaut Class

All 18,353 of the applications submitted were reviewed by human resources experts to determine if they met the basic qualifications. Those that did were then each reviewed by a panel of about 50 people, made up primarily of current astronauts. Called the Astronaut Rating Panel, that group narrowed to applicants down to a few hundred of what they considered the most highly qualified individuals, whose references were then checked.

10 Questions About The 2017 Astronaut Class

From that point, a smaller group called the Astronaut Selection Board brought in the top 120 applicants for an intense round of interviews and some initial medical screening tests. That group is further culled to the top 50 applicants afterward, who are brought back for a second round of interviews and additional screening. The final candidates are selected from that group.

9. How do they get notified?

10 Questions About The 2017 Astronaut Class

Each applicant selected to become an astronaut receives a phone call from the head of the Flight Operations Directorate at our Johnson Space Center and the chief of the astronaut office. They’re asked to share the good news with only their immediate family until their selection has been officially announced.

10. How does the on boarding process work?

10 Questions About The 2017 Astronaut Class

Astronaut candidates will report for duty at Johnson Space Center in August 2017, newly fitted flight suits in tow, and be sworn into civil service. Between their selection and their report for duty, they will make arrangements to leave their current positions and relocate with their family to Houston, Texas.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

The NASA Village

Today in the NASA Village… Can you Grow Cheese in Space?

The NASA Village

Did you know there are several programs where students can apply to have their experiments flown on the International Space Station? The FISE (Foundation for International Space Education) encourages students of all ages to design and propose real experiments to fly in low Earth orbit.  Thomas and Nick Hall are two brothers that participated in this program.

When asked what his greatest hurdle was with growing cheese in space, student researcher Thomas replied, “One of the biggest hurdles I face is just simply staying focused. Being a Student Experimenter is very difficult especially in between the ages of 14 and 18, mainly because those are most kids High School years and during these years many kids are either drowned with homework, hanging out with friends, or out partying.”

The NASA Village

It is so important we get young students interested early in perusing topics that are out of this world. The experiments chosen are carried out by the astronauts on-board the space station.  In the case of cheese balls, Karen Nyberg carried out the experiment and reported back the findings (apparently she was unable to grow the cheese).

The NASA Village

When Nick Hall was asked about his experiment to grow toothpaste, he said the most inspiring part was, “Thomas Hall III.  My brother was the most inspiring because he was also doing the experiment so he was helping me do the experiment.”

The NASA Village

The story of the Hall brothers is a great reminder that experimentation is just that, trials and test of ideas, but ultimately reminds us of the importance of the relationships we have developed on the ground.

Do you have an idea for a research project in space?  Do you have a student researcher in mind? Find out how to apply at Student Spaceflight Experiments Program (SSEP) and learn more about space station education opportunities at STEM on Station.

Next time on the NASA Village… The Latest Fashion Sucks.

Do you want more stories?  Find our NASA Villagers here!

5 years ago

uhmm, can you tell me what exactly a black hole is? or what iy does? thanks, just really confused and curious on how it actually works.


Tags
7 years ago

I was looking at the GLOBE Observer experiments for citizens and was wondering how the eclipse affects the cloud type? Or, I guess, why is that an important thing to measure? Thank you for answering our questions!

As my dad likes to say, I went to college to take up space, so I’m not sure what happens in the atmosphere. However, I think that the atmospheric scientists are interested in the types of waves that will be set up by the temperature gradients generated by the eclipse. So as totality occurs you get a very fast temperature drop in a localized area. I believe this can set up strong winds which may affect the type of clouds and/or their shapes. This is going to be the best-observed eclipse! And one thing I’ve learned as a scientist is that you never know what you’ll find in your data so collect as much of it as possible even if you aren’t sure what you’ll find. That is sometimes when you get the most exciting results! Thanks for downloading the app and helping to collect the data! 


Tags
5 years ago

What are three things you would want everyone to know about your work?


Tags
3 years ago

What sparked your interest in science?


Tags
Loading...
End of content
No more pages to load
  • qqson-k1ss3d
    qqson-k1ss3d liked this · 2 months ago
  • when-stars-touch
    when-stars-touch liked this · 2 months ago
  • oihvgci
    oihvgci liked this · 1 year ago
  • unabashedmoonhideout6969
    unabashedmoonhideout6969 liked this · 1 year ago
  • cozy-queen-of-hats
    cozy-queen-of-hats liked this · 1 year ago
  • 1-800-forget-me-not
    1-800-forget-me-not liked this · 1 year ago
  • fantasy-the-final-frontier
    fantasy-the-final-frontier reblogged this · 1 year ago
  • roseulqrtz
    roseulqrtz liked this · 2 years ago
  • ezrunr-35
    ezrunr-35 liked this · 2 years ago
  • daddyscomfort52
    daddyscomfort52 reblogged this · 2 years ago
  • irwinsatiable
    irwinsatiable liked this · 3 years ago
  • cliffsteele
    cliffsteele reblogged this · 3 years ago
  • boriscasper
    boriscasper liked this · 3 years ago
  • user-n0t-f0und0606
    user-n0t-f0und0606 liked this · 3 years ago
  • 190801181119
    190801181119 liked this · 3 years ago
  • lost-sheep-that-was-found
    lost-sheep-that-was-found reblogged this · 3 years ago
  • moononradio
    moononradio reblogged this · 3 years ago
  • dayangelnightdevil
    dayangelnightdevil liked this · 3 years ago
  • kcvinday
    kcvinday reblogged this · 3 years ago
  • kitayys-archive
    kitayys-archive liked this · 3 years ago
  • len-ore-dove
    len-ore-dove reblogged this · 3 years ago
  • len-ore-dove
    len-ore-dove liked this · 3 years ago
  • cliffsteele
    cliffsteele reblogged this · 3 years ago
  • cliffsteele
    cliffsteele liked this · 3 years ago
  • homerswinedarksea
    homerswinedarksea liked this · 3 years ago
  • scskix
    scskix liked this · 3 years ago
  • couple-goals-af
    couple-goals-af reblogged this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags