TumbleTrack

Your personal Tumblr journey starts here

Cold - Blog Posts

8 months ago

A Tour of Cosmic Temperatures

We often think of space as “cold,” but its temperature can vary enormously depending on where you visit. If the difference between summer and winter on Earth feels extreme, imagine the range of temperatures between the coldest and hottest places in the universe — it’s trillions of degrees! So let’s take a tour of cosmic temperatures … from the coldest spots to the hottest temperatures yet achieved.

First, a little vocabulary: Astronomers use the Kelvin temperature scale, which is represented by the symbol K. Going up by 1 K is the same as going up 1°C, but the scale begins at 0 K, or -273°C, which is also called absolute zero. This is the temperature where the atoms in stuff stop moving. We’ll measure our temperatures in this tour in kelvins, but also convert them to make them more familiar!

We’ll start on the chilly end of the scale with our CAL (Cold Atom Lab) on the International Space Station, which can chill atoms to within one ten billionth of a degree above 0 K, just a fraction above absolute zero.

Cartoon of JAXA’s XRISM telescope gently rocking and back and forth on a dark blue background. The spacecraft has a roughly cylindrical body, which is depicted in light blue with various hardware shown as gray lines and shapes. Solar array "wings" extend on either side and a smaller, rounded cylindrical section pointing toward the right has small tubes extending from the end. Text above reads “XRISM’s Resolve sensor,” and text below says “0.05 K, -459.58°F (-273.10°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Just slightly warmer is the Resolve sensor inside XRISM, pronounced “crism,” short for the X-ray Imaging and Spectroscopy Mission. This is an international collaboration led by JAXA (Japan Aerospace Exploration Agency) with NASA and ESA (European Space Agency). Resolve operates at one twentieth of a degree above 0 K. Why? To measure the heat from individual X-rays striking its 36 pixels!

Cartoon of the Boomerang Nebula subtly shifting on a dark blue background. The nebula is depicted as layered blobs in different shades of pink. A small light pink oval is near the center, and the entire nebula is speckled with small white dots. Text above reads “Boomerang Nebula,” and text below says “1 K, -457.9°F (-272.2°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Resolve and CAL are both colder than the Boomerang Nebula, the coldest known region in the cosmos at just 1 K! This cloud of dust and gas left over from a Sun-like star is about 5,000 light-years from Earth. Scientists are studying why it’s colder than the natural background temperature of deep space.

Cartoon of Neptune against a dark blue background. The planet is mostly a medium shade of blue with streaks of lighter and darker blues. Text above reads “Neptune,” and text below says “72 K, -330°F (-201°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Let’s talk about some temperatures closer to home. Icy gas giant Neptune is the coldest major planet. It has an average temperature of 72 K at the height in its atmosphere where the pressure is equivalent to sea level on Earth. Explore how that compares to other objects in our solar system!

Cartoon of Death Valley in an oval inside a dark blue background. A yellow sun slowly sets in a golden sky behind abstract dark brown mountains. Text at the top of the scene reads “Death Valley,” and text below says “330 K, 134°F (56.7°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

How about Earth? According to NOAA, Death Valley set the world’s surface air temperature record on July 10, 1913. This record of 330 K has yet to be broken — but recent heat waves have come close. (If you’re curious about the coldest temperature measured on Earth, that’d be 183.95 K (-128.6°F or -89.2°C) at Vostok Station, Antarctica, on July 21, 1983.)

We monitor Earth's global average temperature to understand how our planet is changing due to human activities. Last year, 2023, was the warmest year on our record, which stretches back to 1880.

Cartoon of Earth against a deep purple background. The surface of Earth shows royal blue water and the green shapes of landforms. A triangular wedge has been removed from the side facing us, revealing the layers inside. The innermost layer is a blazing white, followed by yellow, orange, and red as they near the surface. Text above reads “Earth’s core,” and text below says “5,600 K, 10,000°F (5,300°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

The inside of our planet is even hotter. Earth’s inner core is a solid sphere made of iron and nickel that’s about 759 miles (1,221 kilometers) in radius. It reaches temperatures up to 5,600 K.

Cartoon of Rigel and the constellation Orion against a deep purple background. On the right is a glowing light blue star with a slightly mottled surface that slowly spins. To its left is a pattern of dots connected with lines, showing the shape of Orion, which very loosely resembles a human with a bow. Rigel’s location is marked in the lower right of the constellation and connected to the larger star with a translucent triangle. Text above reads “Surface of Rigel,” and text below says “11,000 K, 20,000°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

We might assume stars would be much hotter than our planet, but the surface of Rigel is only about twice the temperature of Earth’s core at 11,000 K. Rigel is a young, blue star in the constellation Orion, and one of the brightest stars in our night sky.

Cartoon of a cloud of ionized hydrogen against a purple background. Concentric magenta blobs fill the center of the image, getting lighter toward the center. A bright white point is slightly right of center, surrounded by a yellow-orange haze and X-shaped spikes of light. Text above reads “Hydrogen ionizes,” and text below says “158,000 K, 284,000°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger 

We study temperatures on large and small scales. The electrons in hydrogen, the most abundant element in the universe, can be stripped away from their atoms in a process called ionization at a temperature around 158,000 K. When these electrons join back up with ionized atoms, light is produced. Ionization is what makes some clouds of gas and dust, like the Orion Nebula, glow.

Cartoon of the Sun and its corona against a dark purple background. The Sun is a glowing yellow circle at the center, surrounded by wispy white streaks extending outward that gently wave, representing the corona. Occasionally, smaller white filaments travel inward or outward along very subtle white lines that curve around the Sun, depicting its magnetic field. Text above reads “Solar corona,” and text below says “3 million K, 5.4 million°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

We already talked about the temperature on a star’s surface, but the material surrounding a star gets much, much hotter! Our Sun’s surface is about 5,800 K (10,000°F or 5,500°C), but the outermost layer of the solar atmosphere, called the corona, can reach millions of kelvins.

Our Parker Solar Probe became the first spacecraft to fly through the corona in 2021, helping us answer questions like why it is so much hotter than the Sun's surface. This is one of the mysteries of the Sun that solar scientists have been trying to figure out for years.

Cartoon of a galaxy cluster against a bright purple background. The cluster is depicted as a dozen orange and yellow ovals and abstract spiral galaxies within a cloud in shades of brown with a small tan blob at its center. Text above reads “Perseus galaxy cluster,” and text below says “50 million K, 90 million°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Looking for a hotter spot? Located about 240 million light-years away, the Perseus galaxy cluster contains thousands of galaxies. It’s surrounded by a vast cloud of gas heated up to tens of millions of kelvins that glows in X-ray light. Our telescopes found a giant wave rolling through this cluster’s hot gas, likely due to a smaller cluster grazing it billions of years ago.

Cartoon of layers of material slowly expanding after a supernova explosion against a bright purple background. A bright central dot represents the exploding star, which is surrounded by concentric spiky layers in different shades of pink and purple. Text above reads “Supernova shell,” and text below says “300 million K, 550 million°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Now things are really starting to heat up! When massive stars — ones with eight times the mass of our Sun or more — run out of fuel, they put on a show. On their way to becoming black holes or neutron stars, these stars will shed their outer layers in a supernova explosion. These layers can reach temperatures of 300 million K!

Cartoon of material swirling around a black hole, our view distorted by strong gravity, against a deep purple background. The center of the image is a black hole, with a thin ring of orange around it, then a small gap, and then a striped disk of material. The disk in front of the black hole appears as we would expect, with the disk arcing in front of the black hole like a flat pancake. However, the far side of the disk is visible above and below the black hole, instead of being blocked by it. This is due to the black hole’s gravity, which redirects the light on its path to us. Text above reads “Black hole corona,” and text below says “1 billion K, 1.8 billion°F.”

Credit: NASA's Goddard Space Flight Center/Jeremy Schnittman

We couldn’t explore cosmic temperatures without talking about black holes. When stuff gets too close to a black hole, it can become part of a hot, orbiting debris disk with a conical corona swirling above it. As the material churns, it heats up and emits light, making it glow. This hot environment, which can reach temperatures of a billion kelvins, helps us find and study black holes even though they don’t emit light themselves.

JAXA’s XRISM telescope, which we mentioned at the start of our tour, uses its supercool Resolve detector to explore the scorching conditions around these intriguing, extreme objects.

Cartoon of the moments of the universe after the big bang, against a pinkish-purple background. A blazing blob of white fills the center of the image, surrounded by a halo of bright pink, with spikes of magenta extending in all directions. Text above reads “Universe's first second,” and text below says “10 billion K, 18 billion°F.”

Credit: NASA's Goddard Space Flight Center/CI Lab

Our universe’s origins are even hotter. Just one second after the big bang, our tiny, baby universe consisted of an extremely hot — around 10 billion K — “soup” of light and particles. It had to cool for a few minutes before the first elements could form. The oldest light we can see, the cosmic microwave background, is from about 380,000 years after the big bang, and shows us the heat left over from these earlier moments.

Cartoon of a plasma formed within CERN’s Large Hadron Collider, against a purple background. A blue spherical cloud slowly expands at the center of the image, electric blue on the outside and a deeper blue at the center. Blue lines and dots surround this cloud, moving outward as it becomes larger. Text above reads “Large Hadron Collider,” and text below says “5.5 trillion K, 9.9 trillion°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

We’ve ventured far in distance and time … but the final spot on our temperature adventure is back on Earth! Scientists use the Large Hadron Collider at CERN to smash teensy particles together at superspeeds to simulate the conditions of the early universe. In 2012, they generated a plasma that was over 5 trillion K, setting a world record for the highest human-made temperature.

Want this tour as a poster? You can download it here in a vertical or horizontal version!

The background of this infographic is dominated by a long line, snaking from the upper right to the lower left in a giant "S." The line has temperatures marked from 0 at the bottom to 10-to-the-12 at the top. The guide is built around the Kelvin, the absolute temperature scale used by scientists. There are markings for each power of 10 at regular intervals. Each of the text elements is accompanied by a stylistic drawing. Some of the elements marked are: Large Hadron Collider, 5.5 trillion K (highest temperature measured); Universe’s first second, 10 billion K; Black hole corona, 1 billion K (plasma around accreting black holes); Solar corona, 3 million K; Earth’s core, 5,600 K; Death Valley, 330 K (Earth’s highest natural surface temperature); Neptune, 72 K (average atmospheric temperature at 1 bar level); Boomerang Nebula, 1 K (coldest-known natural environment); XRISM’s Resolve sensor operates at 0.05 K; Absolute zero, 0 K.

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Explore the wonderful and weird cosmos with NASA Universe on X, Facebook, and Instagram. And make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

What Can We Learn from the Universe’s Baby Picture?

If you look at your baby photos, you might see hints of the person you are today — a certain look in the eyes, maybe the hint of your future nose or ears. In the same way, scientists examine the universe’s “baby picture” for clues about how it grew into the cosmos we know now. This baby photo is the cosmic microwave background (CMB), a faint glow that permeates the universe in all directions.

In late September, NASA plans to launch a balloon-based astronomical observatory from Fort Sumner, New Mexico, to study the universe’s baby picture. Meet PIPER! The Primordial Inflation Polarization Explorer will fly at the edge of our atmosphere to look for subtle patterns in the CMB.

image

The CMB is cold. Really, really cold. The average temperature is around minus 455 degrees Fahrenheit. It formed 380,000 years after the big bang, which scientists think happened about 13.8 billion years ago. When it was first discovered, the CMB temperature looked very uniform, but researchers later found there are slight variations like hot and cold spots. The CMB is the oldest light in the universe that we can see. Anything before the CMB is foggy — literally.

image

Credit: Rob van Hal

Before the CMB, the universe was a fog of hot, dense plasma. (By hot, we’re talking about 500 million degrees F.) That’s so hot that atoms couldn’t exist yet – there was just a soup of electrons and protons. Electrons are great at deflecting light. So, any light that existed in the first few hundred thousand years after the big bang couldn’t travel very far before bouncing off electrons, similar to the way a car’s headlights get diffused in fog.  

image

After the big bang, the universe started expanding rapidly in all directions. This expansion is still happening today. As the universe continued to expand, it cooled. By the time the universe reached its 380,000th birthday, it had cooled enough that electrons and protons could combine into hydrogen atoms for the first time. (Scientists call this era recombination.) Hydrogen atoms don’t deflect light nearly as well as loose electrons and the fog lifted. Light could now travel long distances across the universe.

image

The light we see in the CMB comes from the recombination era. As it traveled across the universe, through the formation of stars and galaxies, it lost energy. Now we observe it in the microwave part of the electromagnetic spectrum, which is less energetic than visible light and therefore invisible to our eyes. The first baby photo of the CMB – really, a map of the sky in microwaves – came from our Cosmic Background Explorer, which operated from 1989 to 1993.

image

Why are we so interested in the universe’s baby picture? Well, it’s helped us learn a lot about the structure of the universe around us today. For example, the Wilkinson Microwave Anisotropy Probe produced a detailed map of the CMB and helped us learn that the universe is 68 percent dark energy, 27 percent dark matter and just 5 percent normal matter — the stuff that you and stars are made of.

image

Right after the big bang, we’re pretty sure the universe was tiny. Really tiny. Everything we see today would have been stuffed into something smaller than a proton. If the universe started out that small, then it would have followed the rules of quantum mechanics. Quantum mechanics allows all sorts of strange things to happen. Matter and energy can be “borrowed” from the future then crash back into nothingness. And then cosmic inflation happened and the universe suddenly expanded by a trillion trillion times.

image

All this chaos creates a sea of gravitational waves. (These are called “primordial” gravitational waves and come from a different source than the gravitational waves you may have heard about from merging neutron stars and black holes.) The signal of the primordial gravitational waves is a bit like white noise, where the signal from merging dead stars is like a whistle you can pick up over the noise.

These gravitational waves filled the baby universe and created distinct patterns, called B-mode polarization, in the CMB light. These patterns have handedness, which means even though they’re mirror images of each other, they’re not symmetrical — like trying to wear a left-hand glove on your right hand. They’re distinct from another kind of polarization called E-mode, which is symmetrical and echoes the distribution of matter in the universe.

What Can We Learn From The Universe’s Baby Picture?

That’s where PIPER comes in. PIPER’s two telescopes sit in a hot-tub-sized container of liquid helium, which runs about minus 452 degrees F. It’ll look at 85 percent of the sky and is extremely sensitive, so it will help us learn even more about the early days of the universe. By telling us more about polarization and those primordial gravitational waves, PIPER will help us understand how the early universe grew from that first baby picture.

image

PIPER’s first launch window in Fort Sumner, New Mexico, is in late September. When it’s getting ready to launch, you’ll be able to watch the balloon being filled on the Columbia Scientific Balloon Facility website. Follow NASA Blueshift on Twitter or Facebook for updates about PIPER and when the livestream will be available.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Science Launching to Station Looks Forward and Back

Some of the earliest human explorers used mechanical tools called sextants to navigate vast oceans and discover new lands. Today, high-tech tools navigate microscopic DNA to discover previously unidentified organisms. Scientists aboard the International Space Station soon will have both types of tools at their disposal.

image

Orbital ATK’s Cygnus spacecraft is scheduled to launch its ninth contracted cargo resupply mission to the space station no earlier than May 21. Sending crucial science, supplies and cargo to the crew of six humans living and working on the orbiting laboratory.

Our Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a lost-communications navigation backup. The Sextant Navigation investigation tests use of a hand-held sextant for emergency navigation on missions in deep space as humans begin to travel farther from Earth.

image

Jim Lovell (far left) demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. 

image

The remoteness and constrained resources of living in space require simple but effective processes and procedures to monitor the presence of microbial life, some of which might be harmful. Biomolecule Extraction and Sequencing Technology (BEST) advances the use of sequencing processes to identify microbes aboard the space station that current methods cannot detect and to assess mutations in the microbial genome that may be due to spaceflight.  

image

Genes in Space 3 performed in-flight identification of bacteria on the station for the first time. BEST takes that one step farther, identifying unknown microbial organisms using a process that sequences directly from a sample with minimal preparation, rather than with the traditional technique that requires growing a culture from the sample.

image

Adding these new processes to the proven technology opens new avenues for inflight research, such as how microorganisms on the station change or adapt to spaceflight.

The investigation’s sequencing components provide important information on the station’s microbial occupants, including which organisms are present and how they respond to the spaceflight environment -- insight that could help protect humans during future space exploration. Knowledge gained from BEST could also provide new ways to monitor the presence of microbes in remote locations on Earth.

Moving on to science at a scale even smaller than a microbe, the new Cold Atom Lab (CAL) facility could help answer some big questions in modern physics.

image

CAL creates a temperature ten billion (Yup. BILLION) times colder than the vacuum of space, then uses lasers and magnetic forces to slow down atoms until they are almost motionless. CAL makes it possible to observe these ultra-cold atoms for much longer in the microgravity environment on the space station than would be possible on the ground.

image

Results of this research could potentially lead to a number of improved technologies, including sensors, quantum computers and atomic clocks used in spacecraft navigation.

A partnership between the European Space Agency (ESA) and Space Application Services (SpaceAps), The International Commercial Experiment, or ICE Cubes Service, uses a sliding framework permanently installed on the space station and “plug-and-play” Experiment Cubes.

image

The Experiment Cubes are easy to install and remove, come in different sizes and can be built with commercial off-the-shelf components, significantly reducing the cost and time to develop experiments.

ICE Cubes removes barriers that limit access to space, providing more people access to flight opportunities. Potential fields of research range from pharmaceutical development to experiments on stem cells, radiation, and microbiology, fluid sciences, and more.

For daily nerd outs, follow @ISS_Research on Twitter!

Watch the Launch + More!

image

What’s On Board Briefing

Join scientists and researchers as they discuss some of the investigations that will be delivered to the station on Saturday, May 19 at 1 p.m. EDT at nasa.gov/live. Have questions? Use #askNASA

CubeSat Facebook Live

The International Space Station is often used to deploy small satellites, a low-cost way to test technology and science techniques in space. On board this time, for deployment later this summer, are three CubeSats that will help us monitor rain and snow, study weather and detect and filter radio frequency interference (RFI). 

Join us on Facebook Live on Saturday, May 19 at 3:30 p.m. EDT on the NASA’s Wallops Flight Facility page to hear from experts and ask them your questions about these small satellites. 

Pre-Launch Briefing

Tune in live at nasa.gov/live as mission managers provide an overview and status of launch operations at 11 a.m. EDT on Sunday, May 20. Have questions? Use #askNASA

LIFTOFF!

Live launch coverage will begin on Monday, May 21 4:00 a.m. on NASA Television, nasa.gov/live, Facebook Live, Periscope, Twitch, Ustream and YouTube. Liftoff is slated for 4:39 a.m.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
7 years ago
In Temperatures That Drop Below -20 Degrees Fahrenheit, Along A Route Occasionally Blocked By Wind-driven

In temperatures that drop below -20 degrees Fahrenheit, along a route occasionally blocked by wind-driven ice dunes, a hundred miles from any other people, a team led by two of our scientists are surveying an unexplored stretch of Antarctic ice. 

They’ve packed extreme cold-weather gear and scientific instruments onto sleds pulled by two tank-like snow machines called PistenBullys, and after a stop at the South Pole Station (seen in this image), they began a two- to three-week traverse.

The 470-mile expedition in one of the most barren landscapes on Earth will ultimately provide the best assessment of the accuracy of data collected from space by the Ice Cloud and land Elevation Satellite-2 (ICESat-2), set to launch in 2018.

This traverse provides an extremely challenging way to assess the accuracy of the data. ICESat-2’s datasets are going to tell us incredible things about how Earth’s ice is changing, and what that means for things like sea level rise.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
7 years ago

Why Webb Needs to Chill

Our massive James Webb Space Telescope just recently emerged from about 100 days of cryogenic testing to make sure it can work perfectly at incredibly cold temperatures when it’s in deep space. 

Why Webb Needs To Chill

How cold did it get and why? Here’s the whole scoop...

Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, can’t see.  

image

Webb’s giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and it’s coated in gold to optimize it for seeing infrared light.  

image

Why do we want to see infrared light?

Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study – but if we can see the heat they are emitting, we can still “see” the objects to study them.

It’s like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes – but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.

image

Credit: NASA/IPAC

With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.

image

We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away that…well, we haven’t actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths. 

We call this phenomena “redshift.”  This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.

image

We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.

image

Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webb’s operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).

How do we keep the telescope that cold? 

Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesn’t need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)

image

Also, we have to be careful that no nearby bright things can shine into the telescope – Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun.  

image

Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.

image

How do we make sure it all works in space? 

By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.

image

The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.

image

Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Center’s giant cryogenic chamber, to ensure the whole system will work perfectly in space.  

image

What’s next for Webb? 

It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.

image

Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags