Hey! I Was Wondering How Everyone On The ISS Adjusts To Each Other’s Culture And Language. It Seems

Hey! I was wondering how everyone on the ISS adjusts to each other’s culture and language. It seems like it might be hard with language barriers and other factors, to live in a confined space with people from another country. Do others try to teach you their language? Does everyone mostly speak English, or do some people speak Russian?

More Posts from Nasa and Others

3 years ago

What would be the ideal discovery to make with the Webb Telescope? Or what would you love to find with it?


Tags
7 years ago

Expedition 52 Begins Aboard Space Station

When humans launch to the International Space Station, they are members of expeditions. An expedition is long duration stay on the space station. The first expedition started when the crew docked to the station on Nov. 2, 2000.

Expedition 52 began in June 2017 aboard the orbiting laboratory and will end in September 2017. 

image

FUN FACT: Each Expedition begins with the undocking of the spacecraft carrying the departing crew from the previous Expedition. So Expedition 52 began with the undocking of the Soyuz MS-03 spacecraft that brought Expedition 51 crew members Oleg Novitskiy and Thomas Pesquet back to Earth, leaving NASA astronauts Peggy Whitson and Jack Fischer and Roscosmos cosmonaut Fyodor Yurchikhin aboard the station to await the arrival of the rest of the Expedition 52 crew in July.

image

This expedition includes dozens of out of this world science investigations and a crew that takes #SquadGoals to a whole new level. 

image

Take a look below to get to know the crew members and some of the science that will occur during the space station’s 52nd expedition.

Crew

Expedition 52 Begins Aboard Space Station

Fyodor Yurchikhin (Roscosmos) – Commander

Born: Batumi, Adjar ASSR, Georgian SSR Interests: collecting stamps and space logos, sports, history of cosmonautics and reading Spaceflights: STS-112, Exps. 15, 24/25, 36/37, 51 Bio: https://go.nasa.gov/2o9PO9F 

image

Jack Fischer (NASA) – Flight Engineer

Born:  Louisville, Colorado. Interests: spending time with my family, flying, camping, traveling and construction Spaceflights: Expedition 51 Twitter: @Astro2Fish Bio: https://go.nasa.gov/2o9FY7o

image

Peggy Whitson (NASA) – Flight Engineer

Born: Mount Ayr, Iowa Interests: weightlifting, biking, basketball and water skiing Spaceflights: STS-111, STS – 113, Exps. 5, 16, 50, 51, 52 Twitter: @AstroPeggy Bio:  https://go.nasa.gov/2rpL58x

image

Randolph Bresnik (NASA) – Flight Engineer

Born: Fort Knox, Kentucky Interests: travel, music, photography, weight training, sports, scuba diving, motorcycling, and flying warbirds Spaceflights: STS-129 and STS-135 Twitter: @AstroKomrade Bio: https://go.nasa.gov/2rq5Ssm

image

Sergey Ryazanskiy (Roscosmos) – Flight Engineer

Born: Moscow, Soviet Union Interests: Numismatics, playing the guitar, tourism, sport games Spaceflights: Exps. 37/38 Twitter: @Ryazanskiy_ISS Bio: https://go.nasa.gov/2rpXfOK

Expedition 52 Begins Aboard Space Station

Paolo Nespoli (ESA) – Flight Engineer

Born: Milan, Italy Interests: scuba diving, piloting aircraft, assembling computer hardware, electronic equipment and computer software Spaceflights: STS-120, Exps. 26/27 Bio: https://go.nasa.gov/2rq0tlk

What will the crew be doing during Expedition 52?

image

In addition to one tentatively planned spacewalk, crew members will conduct scientific investigations that will demonstrate more efficient solar arrays, study the physics of neutron stars, study a new drug to fight osteoporosis and study the adverse effects of prolonged exposure to microgravity on the heart.

image

Roll-Out Solar Array (ROSA)

Solar panels are an efficient way to generate power, but they can be delicate and large when used to power a spacecraft or satellites. They are often tightly stowed for launch and then must be unfolded when the spacecraft reaches orbit.

image

The Roll-Out Solar Array (ROSA), is a solar panel concept that is lighter and stores more compactly for launch than the rigid solar panels currently in use. ROSA has solar cells on a flexible blanket and a framework that rolls out like a tape measure.  

Neutron Star Interior Composition Explored (NICER)

Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, are the densest objects in the universe, and contain exotic states of matter that are impossible to replicate in any ground lab.

image

The Neutron Star Interior Composition Explored (NICER) payload, affixed to the exterior of the space station, studies the physics of these stars, providing new insight into their nature and behavior.

Systemic Therapy of NELL-1 for Osteoporosis (Rodent Research-5)

When people and animals spend extended periods of time in space, they experience bone density loss. The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.

image

Fruit Fly Lab-02

Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity. The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart.

image

Watch their progress HERE!

Expedition 52 Mission Patch 

Our planet is shown surrounded by an imaginary constellation shaped like a house, depicting the theme of the patch: “The Earth is our home.” It is our precious cradle, to be preserved for all future generations. The house of stars just touches the Moon, acknowledging the first steps we have already taken there, while Mars is not far away, just beyond the International Space Station, symbolized by the Roman numeral “LII,” signifying the expedition number. 

image

The planets Saturn and Jupiter, seen orbiting farther away, symbolize humanity’s exploration of deeper space, which will begin soon. A small Sputnik is seen circling the Earth on the same orbit with the space station, bridging the beginning of our cosmic quest till now: Expedition 52 will launch in 2017, sixty years after that first satellite. Two groups of crew names signify the pair of Soyuz vehicles that will launch the astronauts of Expedition 52 to the Station. 

Click here for more details about the expedition and follow @ISS_Research on Twitter to stay up to date on the science happening aboard YOUR orbiting laboratory!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
The Lagoon Nebula 

The Lagoon Nebula 

This colorful image, taken by our Hubble Space Telescope between Feb. 12 and Feb. 18, 2018 , celebrated the Earth-orbiting observatory’s 28th anniversary of viewing the heavens, giving us a window seat to the universe’s extraordinary tapestry of stellar birth and destruction.

At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust.

This region epitomizes a typical, raucous stellar nursery full of birth and destruction. The clouds may look majestic and peaceful, but they are in a constant state of flux from the star’s torrent of searing radiation and high-speed particles from stellar winds. As the monster star throws off its natal cocoon of material with its powerful energy, it is suppressing star formation around it.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago
A Persistent Heatwave Has Been Lingering Over Parts Of Europe, Setting Record High Temperatures And Turning

A persistent heatwave has been lingering over parts of Europe, setting record high temperatures and turning typically green landscapes brown.

The United Kingdom experienced its driest first half of summer (June 1 to July 16) on record. 

These images, acquired by our Terra satellite, show the burned landscape of the United Kingdom and northwestern Europe as of July 15, 2018, compared with July 17, 2017. 

Peter Gibson, a postdoctoral researcher at our Jet Propulsion Laboratory, examined how rising global temperatures are linked to regional heatwaves. “If the globe continues to warm, it’s clear we will continue to see events like this increasing in frequency, severity and duration,” Gibson said. “We found that parts of Europe and North America could experience an extra 10 to 15 heatwave days per degree of global warming beyond what we have seen already.”

Read more HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
4 years ago

Do you have any messages or tips for other girls who want to study and work in STEM fields?


Tags
6 years ago

People of OSIRIS-REx

As OSIRIS-REx closes in on its target destination—asteroid Bennu—anticipation is building for the first-ever, close-up glimpse of this small world. It took thousands of people to come this far. Get to know a few members of the team:

People Of OSIRIS-REx

1. Carl Hergenrother, Astronomy Working Group Lead & Strategic and Tactical Scientist

Job Location: University of Arizona, Tucson Expertise: Asteroids & Comets Time on mission: Since before there was a mission Age: 45 Hometown: Oakland, New Jersey

“When you’re observing Bennu with a telescope, you see it as a dot. … So when it actually becomes its own little world, it’s really exciting—and almost a little sad. Up until that point, it can be anything. And now, there it is and that’s it.”

People Of OSIRIS-REx

2. Heather Roper, Graphic Designer

Job Location: University of Arizona, Tucson Job Title: Graphic Designer Expertise: Visual Communications Time on mission: 5 years Age: 25 Hometown: Tucson, Arizona

“I really like the challenge of visually depicting the science of the mission and getting to show people things that we can’t see.”

People Of OSIRIS-REx

3. Jason Dworkin, Project Scientist

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Origin-of-life Chemistry Time on mission: Since before there was a mission Age: 49 Hometown: Houston, Texas

"In 10th grade, I had to do a science fair project for biology class. … I wanted to expand on chemistry experiments from old journal papers; but that could have been dangerous. I got in touch with … a pioneering scientist in origin-of-life research and asked for advice. He was worried that I would accidentally injure myself, so he invited me into his lab . . . that helped set my career.”

People Of OSIRIS-REx

4. Sara Balram Knutson, Science Operations Lead Engineer

Job Location: University of Arizona, Tucson Expertise: Aerospace Engineering Time on mission: 6 years Age: 31 Hometown: Vacaville, California

“My dad was in the Air Force, so I grew up being a bit of an airplane nerd. When I was in high school, I really liked math, science, and anything having to do with flight. I looked for a field where I could combine all those interests and I found aerospace engineering.”

People Of OSIRIS-REx

5. Nancy Neal Jones, Public Affairs Lead

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Science Communications Time on mission: 7 years Age: 51 Hometown: New York, New York

“We’re going to a pristine asteroid to take a sample to bring to Earth. This means that my children and grandchildren, if they decide to go into the sciences, may have an opportunity analyze the Bennu samples.”

People Of OSIRIS-REx

6. Javier Cerna, Communications System Engineer

Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Electrical Engineering Time on mission: Since before there was a mission Age: 37 Hometown: Born in Mexico City, and raised in Los Angeles, and Las Cruces, New Mexico

“One thing we do is evaluate how strong the signal from the spacecraft is—kind of like checking the strength of the WiFi connection. Basically, we’re ensuring that the link from the spacecraft to the ground, and vice versa, stays strong.”

People Of OSIRIS-REx

7. Jamie Moore, Contamination Control Engineer

Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Chemistry Time on mission: 5 years Age: 32 Hometown: Apple Valley, Minnesota & Orlando, Florida

“I was there for just about every deployment of the sampling hardware to make sure it was kept clean and to evaluate the tools engineers were using. I even went to Florida with the spacecraft to make sure it stayed clean until launch.”

People Of OSIRIS-REx

8. Mike Moreau, Flight Dynamics System Manager

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland; Littleton, Colorado Expertise: Mechanical and aerospace engineering Time on mission: 5 years Age: 47 Hometown: Swanton, Vermont

“I grew up on a dairy farm in Vermont, which is a world away from working for NASA. But I can trace a lot of my success as an engineer and a leader back to things that I learned on my dad’s farm.”

People Of OSIRIS-REx

9. Johnna L. McDaniel, Contamination Control Specialist

Job Location: NASA’s Kennedy Space Center, Florida Expertise: Anti-Contamination Cleaning Time on Mission: 4 months Age: 53 Hometown: Cocoa, Florida

“The clothing requirements depend on the payload. With OSIRIS-Rex, we could not wear any items made with nylon. This was because they have amino acid-based polymers in them and would have contaminated the spacecraft. I even had a special bucket for mopping.”

People Of OSIRIS-REx

10. Annie Hasten, Senior Financial Analyst

Job Location: Lockheed Martin Corporation, Steamboat Springs, Colorado Expertise: Business Time on Mission: 1.5 years Age: 30 Hometown: Littleton, Colorado

“I think it’s a pleasure to work with people who are so intensely passionate about their jobs. These engineers are doing their dream jobs, so you feed off of that positive energy.”

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.

Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.

ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!

This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

The Kepler space telescope has shown us our galaxy is teeming with planets — and other surprises

image

The Kepler space telescope has taught us there are so many planets out there, they outnumber even the stars. Here is a sample of these wondrous, weird and unexpected worlds (and other spectacular objects in space) that Kepler has spotted with its “eye” opened to the heavens.

Kepler has found that double sunsets really do exist.

image

Yes, Star Wars fans, the double sunset on Tatooine could really exist. Kepler discovered the first known planet around a double-star system, though Kepler-16b is probably a gas giant without a solid surface.

Kepler has gotten us closer to finding planets like Earth.

image

Nope. Kepler hasn’t found Earth 2.0, and that wasn’t the job it set out to do. But in its survey of hundreds of thousands of stars, Kepler found planets near in size to Earth orbiting at a distance where liquid water could pool on the surface. One of them, Kepler-62f, is about 40 percent bigger than Earth and is likely rocky. Is there life on any of them? We still have a lot more to learn.

This sizzling world is so hot iron would melt!

image

One of Kepler’s early discoveries was the small, scorched world of Kepler-10b. With a year that lasts less than an Earth day and density high enough to imply it’s probably made of iron and rock, this “lava world” gave us the first solid evidence of a rocky planet outside our solar system. 

If it’s not an alien megastructure, what is this oddly fluctuating star?

image

When Kepler detected the oddly fluctuating light from “Tabby’s Star,” the internet lit up with speculation of an alien megastructure. Astronomers have concluded it’s probably an orbiting dust cloud.  

Kepler caught this dead star cannibalizing its planet.

image

What happens when a solar system dies? Kepler discovered a white dwarf, the compact corpse of a star in the process of vaporizing a planet.

These Kepler planets are more than twice the age of our Sun!

image

The five small planets in Kepler-444 were born 11 billion years ago when our galaxy was in its youth. Imagine what these ancient planets look like after all that time?

Kepler found a supernova exploding at breakneck speed.

image

This premier planet hunter has also been watching stars explode. Kepler recorded a sped-up version of a supernova called a “fast-evolving luminescent transit” that reached its peak brightness at breakneck speed. It was caused by a star spewing out a dense shell of gas that lit up when hit with the shockwave from the blast. 

* All images are artist illustrations.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

When you're finally up out of the air, high enough to see the Earth, what is it like to see our home planet from above for the first time?


Tags
8 months ago

A Tour of Cosmic Temperatures

We often think of space as “cold,” but its temperature can vary enormously depending on where you visit. If the difference between summer and winter on Earth feels extreme, imagine the range of temperatures between the coldest and hottest places in the universe — it’s trillions of degrees! So let’s take a tour of cosmic temperatures … from the coldest spots to the hottest temperatures yet achieved.

First, a little vocabulary: Astronomers use the Kelvin temperature scale, which is represented by the symbol K. Going up by 1 K is the same as going up 1°C, but the scale begins at 0 K, or -273°C, which is also called absolute zero. This is the temperature where the atoms in stuff stop moving. We’ll measure our temperatures in this tour in kelvins, but also convert them to make them more familiar!

We’ll start on the chilly end of the scale with our CAL (Cold Atom Lab) on the International Space Station, which can chill atoms to within one ten billionth of a degree above 0 K, just a fraction above absolute zero.

Cartoon of JAXA’s XRISM telescope gently rocking and back and forth on a dark blue background. The spacecraft has a roughly cylindrical body, which is depicted in light blue with various hardware shown as gray lines and shapes. Solar array "wings" extend on either side and a smaller, rounded cylindrical section pointing toward the right has small tubes extending from the end. Text above reads “XRISM’s Resolve sensor,” and text below says “0.05 K, -459.58°F (-273.10°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Just slightly warmer is the Resolve sensor inside XRISM, pronounced “crism,” short for the X-ray Imaging and Spectroscopy Mission. This is an international collaboration led by JAXA (Japan Aerospace Exploration Agency) with NASA and ESA (European Space Agency). Resolve operates at one twentieth of a degree above 0 K. Why? To measure the heat from individual X-rays striking its 36 pixels!

Cartoon of the Boomerang Nebula subtly shifting on a dark blue background. The nebula is depicted as layered blobs in different shades of pink. A small light pink oval is near the center, and the entire nebula is speckled with small white dots. Text above reads “Boomerang Nebula,” and text below says “1 K, -457.9°F (-272.2°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Resolve and CAL are both colder than the Boomerang Nebula, the coldest known region in the cosmos at just 1 K! This cloud of dust and gas left over from a Sun-like star is about 5,000 light-years from Earth. Scientists are studying why it’s colder than the natural background temperature of deep space.

Cartoon of Neptune against a dark blue background. The planet is mostly a medium shade of blue with streaks of lighter and darker blues. Text above reads “Neptune,” and text below says “72 K, -330°F (-201°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Let’s talk about some temperatures closer to home. Icy gas giant Neptune is the coldest major planet. It has an average temperature of 72 K at the height in its atmosphere where the pressure is equivalent to sea level on Earth. Explore how that compares to other objects in our solar system!

Cartoon of Death Valley in an oval inside a dark blue background. A yellow sun slowly sets in a golden sky behind abstract dark brown mountains. Text at the top of the scene reads “Death Valley,” and text below says “330 K, 134°F (56.7°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

How about Earth? According to NOAA, Death Valley set the world’s surface air temperature record on July 10, 1913. This record of 330 K has yet to be broken — but recent heat waves have come close. (If you’re curious about the coldest temperature measured on Earth, that’d be 183.95 K (-128.6°F or -89.2°C) at Vostok Station, Antarctica, on July 21, 1983.)

We monitor Earth's global average temperature to understand how our planet is changing due to human activities. Last year, 2023, was the warmest year on our record, which stretches back to 1880.

Cartoon of Earth against a deep purple background. The surface of Earth shows royal blue water and the green shapes of landforms. A triangular wedge has been removed from the side facing us, revealing the layers inside. The innermost layer is a blazing white, followed by yellow, orange, and red as they near the surface. Text above reads “Earth’s core,” and text below says “5,600 K, 10,000°F (5,300°C).”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

The inside of our planet is even hotter. Earth’s inner core is a solid sphere made of iron and nickel that’s about 759 miles (1,221 kilometers) in radius. It reaches temperatures up to 5,600 K.

Cartoon of Rigel and the constellation Orion against a deep purple background. On the right is a glowing light blue star with a slightly mottled surface that slowly spins. To its left is a pattern of dots connected with lines, showing the shape of Orion, which very loosely resembles a human with a bow. Rigel’s location is marked in the lower right of the constellation and connected to the larger star with a translucent triangle. Text above reads “Surface of Rigel,” and text below says “11,000 K, 20,000°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

We might assume stars would be much hotter than our planet, but the surface of Rigel is only about twice the temperature of Earth’s core at 11,000 K. Rigel is a young, blue star in the constellation Orion, and one of the brightest stars in our night sky.

Cartoon of a cloud of ionized hydrogen against a purple background. Concentric magenta blobs fill the center of the image, getting lighter toward the center. A bright white point is slightly right of center, surrounded by a yellow-orange haze and X-shaped spikes of light. Text above reads “Hydrogen ionizes,” and text below says “158,000 K, 284,000°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger 

We study temperatures on large and small scales. The electrons in hydrogen, the most abundant element in the universe, can be stripped away from their atoms in a process called ionization at a temperature around 158,000 K. When these electrons join back up with ionized atoms, light is produced. Ionization is what makes some clouds of gas and dust, like the Orion Nebula, glow.

Cartoon of the Sun and its corona against a dark purple background. The Sun is a glowing yellow circle at the center, surrounded by wispy white streaks extending outward that gently wave, representing the corona. Occasionally, smaller white filaments travel inward or outward along very subtle white lines that curve around the Sun, depicting its magnetic field. Text above reads “Solar corona,” and text below says “3 million K, 5.4 million°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

We already talked about the temperature on a star’s surface, but the material surrounding a star gets much, much hotter! Our Sun’s surface is about 5,800 K (10,000°F or 5,500°C), but the outermost layer of the solar atmosphere, called the corona, can reach millions of kelvins.

Our Parker Solar Probe became the first spacecraft to fly through the corona in 2021, helping us answer questions like why it is so much hotter than the Sun's surface. This is one of the mysteries of the Sun that solar scientists have been trying to figure out for years.

Cartoon of a galaxy cluster against a bright purple background. The cluster is depicted as a dozen orange and yellow ovals and abstract spiral galaxies within a cloud in shades of brown with a small tan blob at its center. Text above reads “Perseus galaxy cluster,” and text below says “50 million K, 90 million°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Looking for a hotter spot? Located about 240 million light-years away, the Perseus galaxy cluster contains thousands of galaxies. It’s surrounded by a vast cloud of gas heated up to tens of millions of kelvins that glows in X-ray light. Our telescopes found a giant wave rolling through this cluster’s hot gas, likely due to a smaller cluster grazing it billions of years ago.

Cartoon of layers of material slowly expanding after a supernova explosion against a bright purple background. A bright central dot represents the exploding star, which is surrounded by concentric spiky layers in different shades of pink and purple. Text above reads “Supernova shell,” and text below says “300 million K, 550 million°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Now things are really starting to heat up! When massive stars — ones with eight times the mass of our Sun or more — run out of fuel, they put on a show. On their way to becoming black holes or neutron stars, these stars will shed their outer layers in a supernova explosion. These layers can reach temperatures of 300 million K!

Cartoon of material swirling around a black hole, our view distorted by strong gravity, against a deep purple background. The center of the image is a black hole, with a thin ring of orange around it, then a small gap, and then a striped disk of material. The disk in front of the black hole appears as we would expect, with the disk arcing in front of the black hole like a flat pancake. However, the far side of the disk is visible above and below the black hole, instead of being blocked by it. This is due to the black hole’s gravity, which redirects the light on its path to us. Text above reads “Black hole corona,” and text below says “1 billion K, 1.8 billion°F.”

Credit: NASA's Goddard Space Flight Center/Jeremy Schnittman

We couldn’t explore cosmic temperatures without talking about black holes. When stuff gets too close to a black hole, it can become part of a hot, orbiting debris disk with a conical corona swirling above it. As the material churns, it heats up and emits light, making it glow. This hot environment, which can reach temperatures of a billion kelvins, helps us find and study black holes even though they don’t emit light themselves.

JAXA’s XRISM telescope, which we mentioned at the start of our tour, uses its supercool Resolve detector to explore the scorching conditions around these intriguing, extreme objects.

Cartoon of the moments of the universe after the big bang, against a pinkish-purple background. A blazing blob of white fills the center of the image, surrounded by a halo of bright pink, with spikes of magenta extending in all directions. Text above reads “Universe's first second,” and text below says “10 billion K, 18 billion°F.”

Credit: NASA's Goddard Space Flight Center/CI Lab

Our universe’s origins are even hotter. Just one second after the big bang, our tiny, baby universe consisted of an extremely hot — around 10 billion K — “soup” of light and particles. It had to cool for a few minutes before the first elements could form. The oldest light we can see, the cosmic microwave background, is from about 380,000 years after the big bang, and shows us the heat left over from these earlier moments.

Cartoon of a plasma formed within CERN’s Large Hadron Collider, against a purple background. A blue spherical cloud slowly expands at the center of the image, electric blue on the outside and a deeper blue at the center. Blue lines and dots surround this cloud, moving outward as it becomes larger. Text above reads “Large Hadron Collider,” and text below says “5.5 trillion K, 9.9 trillion°F.”

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

We’ve ventured far in distance and time … but the final spot on our temperature adventure is back on Earth! Scientists use the Large Hadron Collider at CERN to smash teensy particles together at superspeeds to simulate the conditions of the early universe. In 2012, they generated a plasma that was over 5 trillion K, setting a world record for the highest human-made temperature.

Want this tour as a poster? You can download it here in a vertical or horizontal version!

The background of this infographic is dominated by a long line, snaking from the upper right to the lower left in a giant "S." The line has temperatures marked from 0 at the bottom to 10-to-the-12 at the top. The guide is built around the Kelvin, the absolute temperature scale used by scientists. There are markings for each power of 10 at regular intervals. Each of the text elements is accompanied by a stylistic drawing. Some of the elements marked are: Large Hadron Collider, 5.5 trillion K (highest temperature measured); Universe’s first second, 10 billion K; Black hole corona, 1 billion K (plasma around accreting black holes); Solar corona, 3 million K; Earth’s core, 5,600 K; Death Valley, 330 K (Earth’s highest natural surface temperature); Neptune, 72 K (average atmospheric temperature at 1 bar level); Boomerang Nebula, 1 K (coldest-known natural environment); XRISM’s Resolve sensor operates at 0.05 K; Absolute zero, 0 K.

Credit: NASA's Goddard Space Flight Center/Scott Wiessinger

Explore the wonderful and weird cosmos with NASA Universe on X, Facebook, and Instagram. And make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • watch
    watch reblogged this · 1 year ago
  • kreitler
    kreitler reblogged this · 2 years ago
  • kreitler
    kreitler liked this · 2 years ago
  • senadimell
    senadimell reblogged this · 2 years ago
  • senadimell
    senadimell liked this · 2 years ago
  • noncommittal-shrug
    noncommittal-shrug liked this · 2 years ago
  • uniquephilosopherwombat
    uniquephilosopherwombat liked this · 2 years ago
  • serenity-the-firefly
    serenity-the-firefly liked this · 2 years ago
  • silvermarmoset
    silvermarmoset reblogged this · 2 years ago
  • ladymacbethstanaccount
    ladymacbethstanaccount liked this · 2 years ago
  • gendervoidkillua
    gendervoidkillua liked this · 2 years ago
  • chocolatequeennk
    chocolatequeennk reblogged this · 2 years ago
  • whyis88betterthan69-blog
    whyis88betterthan69-blog liked this · 2 years ago
  • youreinlove-truelove
    youreinlove-truelove liked this · 3 years ago
  • mels-my-olympian
    mels-my-olympian reblogged this · 4 years ago
  • afairmaiden
    afairmaiden reblogged this · 4 years ago
  • banana-with-a-bow-tie
    banana-with-a-bow-tie reblogged this · 4 years ago
  • banana-with-a-bow-tie
    banana-with-a-bow-tie liked this · 4 years ago
  • supposedly-ciara
    supposedly-ciara reblogged this · 4 years ago
  • supposedly-ciara
    supposedly-ciara liked this · 4 years ago
  • the-bards-song-will-remain
    the-bards-song-will-remain liked this · 4 years ago
  • pupunpopero
    pupunpopero liked this · 4 years ago
  • willtheandroid
    willtheandroid reblogged this · 4 years ago
  • princessandthechameleon
    princessandthechameleon liked this · 5 years ago
  • chaoticskyy
    chaoticskyy reblogged this · 5 years ago
  • chaoticskyy
    chaoticskyy liked this · 5 years ago
  • cheerupqueerup
    cheerupqueerup reblogged this · 5 years ago
  • vaguepositivity
    vaguepositivity liked this · 5 years ago
  • astudyofnonsense
    astudyofnonsense reblogged this · 5 years ago
  • bottles-meme-bean-machine
    bottles-meme-bean-machine reblogged this · 5 years ago
  • mrshooraan
    mrshooraan liked this · 5 years ago
  • unknown-uwoit
    unknown-uwoit liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags