How Did You Choose Your Flight Director Name?

How did you choose your Flight Director name?

More Posts from Nasa and Others

1 year ago
Hello There 👋

Hello there 👋

Welcome back to Mindful Mondays! 🧘

Mondays are, famously, most people’s seventh favorite day of the week. And Mondays where everything is darker, longer, and colder than normal? Thanks, but no thanks.

But don’t panic; we’ve got something to help. It might be small, but it can make a big difference. Just ten minutes of mindfulness can go a long way, and taking some time out to sit down, slow down, and breathe can help center your thoughts and balance your mood. Sometimes, the best things in life really are free.

This year, we have teamed up with the good folks at @nasa. They want you to tune in and space out to relaxing music and ultra-high-definition visuals of the cosmos—from the surface of Mars.  

Sounds good, right? Well, it gets better. Watch more Space Out episodes on NASA+, a new no-cost, ad-free streaming service.

Why not give it a try? Just a few minutes this Monday morning can make all the difference, and we are bringing mindfulness straight to you. 

🧘WATCH: Space Out with NASA: Martian Landscapes, 11/27 at 1pm EST🧘

Space Out with NASA: Martian Landscapes
YouTube
Explore the surface of Mars as you turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmi
7 years ago

Does an ecplispe cause any unusual effects on the Earth?

Yes, and this is one of the things we’re hoping to study more with this eclipse! If you are in totality, you’ll notice a significant temperature drop. We are also expecting to see changes in the Earth’s atmosphere and ionosphere. You can help us document these changes using the GLOBE Observer app https://www.globe.gov/globe-data/data-entry/globe-observer ! There are lots of great citizen science going on during this eclipse, and we’d love to have everyone here helping out! https://eclipse2017.nasa.gov/citizen-explorers


Tags
5 years ago
Say Hello To The Butterfly Nebula 👋

Say hello to the Butterfly Nebula 👋

It looks like our Hubble Space Telescope captured an image of a peaceful, cosmic butterfly unfurling its celestial wings, but the truth is vastly more violent. In the Butterfly Nebula, layers of gas are being ejected from a dying star. Medium-mass stars grow unstable as they run out of fuel, which leads them to blast tons of material out into space at speeds of over a million miles per hour!

Streams of intense ultraviolet radiation cause the cast-off material to glow, but eventually the nebula will fade and leave behind only a small stellar corpse called a white dwarf. Our middle-aged Sun can expect a similar fate once it runs out of fuel in about six billion years.

Planetary nebulas like this one aren’t actually related to planets; the term was coined by astronomer William Herschel, who actually discovered the Butterfly Nebula in 1826. Through his small telescope, planetary nebulas looked like glowing, planet-like orbs. While stars that generate planetary nebulas may have once had planets orbiting them, scientists expect that the fiery death throes these stars undergo will ultimately leave any planets in their vicinity completely uninhabitable.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

50 Years Ago: Apollo 17

Not long after midnight on Dec. 7, 1972, the last crewed mission to the Moon, Apollo 17, lifted off with three astronauts: Eugene Cernan, Harrison Schmitt, and Ronald Evans.

Experience the Apollo 17 launch and follow the mission in real time.

The Apollo 17 Space Vehicle sits poised beneath a full moon on Launch Pad 39A at the Kennedy Space Center during the launch countdown. The Saturn V rocket is mostly white, with several black patches, American flags, and the letters “USA” on its side. It is connected to an orange launch tower on the left. Credit: NASA

Meet the Crew

Let’s meet the astronauts who made the final Apollo trip to the Moon, including the first scientist-astronaut.

Gene Cernan: In 1972, Apollo 17 Mission Commander Eugene A. Cernan had two space flights under his belt, Gemini 9 in June 1966, and Apollo 10 in May 1969. He was a naval aviator, electrical and aeronautical engineer and fighter pilot.

Ron Evans: Apollo 17 Command Module Pilot Ronald E. Evans was selected as a member of the 4th group of NASA astronauts in 1966. Like Cernan, he was an electrical and aeronautical engineer, and naval aviator before his assignment to the Apollo 17 crew.

Harrison (Jack) Schmitt: Lunar Module Pilot Dr. Harrison (Jack) Schmitt joined NASA as a member of the first group of scientist-astronauts in 1965. Before working for NASA, Schmitt was a geologist at the USGS Astrogeology Center. He was on the backup crew for Apollo 15 before being selected for the prime crew of Apollo 17. He became the first of the scientist-astronauts to go to space and the 12th human to walk on the Moon.

The Apollo 17 prime astronaut crew observes pre-launch activity at Complex 39A at NASA’s Kennedy Space Center while participating in Emergency Egress Test. They are, left to right, Ronald E. Evans, Harrison H. Schmitt, and Eugene A. Cernan. Credit: NASA

The Blue Marble

“The Blue Marble,” one of the most reproduced images in history, was taken 50 years ago on Dec. 7, 1972 by the Apollo 17 crew as they made their way to the Moon.

This view of Earth was seen by the Apollo 17 crew as they traveled toward the moon on their NASA lunar landing mission. This outstanding trans-lunar coast photograph extends from the Mediterranean Sea area to the Antarctica south polar ice cap. This is the first time the Apollo trajectory made it possible to photograph the south polar ice cap. Note the heavy cloud cover in the Southern Hemisphere. Almost the entire coastline of Africa is clearly visible. The Arabian Peninsula can be seen at the northeastern edge of Africa. The large island off the coast of Africa is the Malagasy Republic. The Asian mainland is on the horizon toward the northeast. Credit: NASA

Bag of Soup, Anyone?

NASA astronauts have an array of menu items to stay well fed and hydrated on missions. For Apollo 17, the menus allocated around 2,500 calories per day for each astronaut. They included:

Bacon Squares

Peanut Butter Sandwiches

Frankfurters

Lobster Bisque

Like anything going to space, weight and containment matter. That's why the Apollo 17 menu included plenty of soups and puddings.

Ron Evans smiles as he holds up a packet of soup during the outbound trip of Apollo 17. Credit: NASA

Synchronicity

On Dec. 11, 2022,  the Artemis I mission will be splashing down on Earth after its 25.5-day mission. At 2:55 p.m. 50 years prior, the Apollo 17 lunar module (LM) landed on the Moon, with Commander Gene Cernan and LM Pilot Harrison Schmitt on board. Ron Evans remained in the Command and Service Module (CSM) orbiting the Moon.

Experience the landing.

The half Earth appears in the black sy over the Lunar Module on the lunar surface. The spacecraft has a radio dish, black thermal blankets, and a tubular metal support structure. Credit: NASA

Planting the Flag

One of the first tasks the Apollo 17 crew did on their first moonwalk was to plant the American flag. There’s no wind on the Moon, but that doesn’t mean the flag has to droop. Did you know that a horizontal rod with a latch makes the flag appear to be flying in the wind? Gene Cernan carefully composed this photo to get Schmitt, the flag, and the Earth in a single shot.

So, is the flag still there? Images of the Apollo 17 landing site from the Lunar Reconnaissance Orbiter Camera show that in 2011 the flag was still standing and casting a shadow!

Astronaut Harrison Schmitt poses in a bulky white spacesuit on the Lunar surface next to an American flag. The Earth hangs in the black sky in the background, and fellow astronaut Eugene Cernan is seen in the reflection of Schmitt's golden visor. Credit: NASA

Moon Buggy

During Apollo 17, the Lunar Rover Vehicle (LRV), nicknamed the Moon buggy, logged the farthest distance from the Lunar Module of any Apollo mission, about 4.7 miles (7.5 km). 

As a precaution, the LRV had a walk-back limit in the event of an issue; astronauts had to have enough resources to walk back to the lunar module if need be.

Astronaut Gene Cernan wears a bulky white space suit with a gold visor. He is sitting in the Lunar Roving Vehicle (LRV), a car-like open vehicle with large, round tires and red-orange fenders. It sits on the surface of the gray, dusty Moon. The mountain sloping upward in the right background is the east end of South Massif. Credit: NASA

Grab the Duct Tape!

The right rear fender extension of the LRV (Moon buggy) was torn off, kicking up dust as the crew drove, reducing visibility. The crew made a resourceful repair using duct tape and maps.

For LRV fans, visiting an LRV driven on the Moon is a bit difficult since all three LRVs used on the Apollo 15, 16, and 17 missions were left on the Moon. But you can find an LRV used for training at the National Air and Space Museum in Washington. Read more about the LRV.

A close-up view of the rear right wheel of the Lunar Roving Vehicle (LRV) at the Taurus-Littrow. Note the makeshift repair arrangement on the fender of the LRV; a folded map is held in place parallel to the wheel with several strips of gray duct tape. Below the wheel, sunlight casts stark shadows on the dusty lunar surface. Credit: NASA

The Perils of Lunar Dust

After the first lunar EVA, Apollo 17 astronaut Harrison Schmitt reported that he suffered from “lunar hay fever” in reaction to the lunar dust. Unlike Earth’s dust particles which are rounded, Moon dust particles are sharp and abrasive, irritating astronaut eyes, nasal passages, and lungs.

Curious about how Moon dust feels and smells? Find out!

Scientist-astronaut Harrison Schmitt, Apollo 17 lunar module pilot, uses an adjustable sampling scoop to retrieve lunar samples during the second Apollo 17 extravehicular activity (EVA), at Station 5 at the Taurus-Littrow landing site. A gnomon is atop the large rock in the foreground. The gnomon is a stadia rod mounted on a tripod, and serves as an indicator of the gravitational vector and provides accurate vertical reference and calibrated length for determining size and position of objects in near-field photographs. The color scale of blue, orange and green is used to accurately determine color for photography. Credit: NASA

So What’s it Like?

After his return to Earth, Apollo 17 astronaut Harrison Schmitt (on the right) described his time on the Moon:

“Working on the Moon is a lot of fun. It’s like walking around on a giant trampoline all the time and you’re just as strong as you were here on Earth, but you don’t weigh as much.”

Astronaut Gene Cernan (left) and scientist-astronaut Harrison Schmitt wear white flight suits with Apollo patches on the left chest. Behind them is a gray metal hatch decorated with a small American flag. Credit: NASA

Splashdown! 

After 12 days and 14 hours in space, the Apollo 17 astronauts splashed down in the Pacific Ocean at 2:25 p.m. EST on Dec. 19, 1972. It was the longest of all the Apollo missions, with the most photos taken. A recovery team was waiting on the USS Ticonderoga just 4 miles (6.4 km) away to pick up the astronauts, the lunar samples, and the Crew Module.

The Apollo 17 Command Module (CM), with astronauts Gene Cernan, Ron Evans and Harrison Schmitt aboard appears as a small conical spaceship.The capsule nears splashdown in the South Pacific Ocean with three enormous red-and-white striped parachutes. This overhead view was taken from a recovery aircraft seconds before the spacecraft hit the blue water. Later, the three crewmen were picked up by a helicopter from the prime recovery ship, USS Ticonderoga. Credit: NASA

When Are We Going Back?

NASA’s Artemis Program has taken its first steps to sending humans back to the Moon with Artemis I, currently on its way back to Earth. The program plans to land humans, including the first women and person of color, on the Moon’s south polar region with its Artemis III mission, currently slated to launch in 2025.

Is aerospace history your cup of tea? Be sure to check out more from NASA’s past missions at www.nasa.gov/history.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

Cosmic Couples and Devastating Breakups

image

Relationships can be complicated — especially if you’re a pair of stars. Sometimes you start a downward spiral you just can’t get out of, eventually crash together and set off an explosion that can be seen 130 million light-years away.

For Valentine’s Day, we’re exploring the bonds between some of the universe’s peculiar pairs … as well as a few of their cataclysmic endings.

Stellar Couples

When you look at a star in the night sky, you may really be viewing two or more stars dancing around each other. Scientists estimate three or four out of every five Sun-like stars in the Milky Way have at least one partner. Take our old north star Thuban, for example. It’s a binary, or two-star, system in the constellation Draco.

image

Alpha Centauri, our nearest stellar neighbor, is actually a stellar triangle. Two Sun-like stars, Rigil Kentaurus and Toliman, form a pair (called Alpha Centauri AB) that orbit each other about every 80 years. Proxima Centauri is a remote red dwarf star caught in their gravitational pull even though it sits way far away from them (like over 300 times the distance between the Sun and Neptune).

image

Credit: ESO/Digitized Sky Survey 2/Davide De Martin/Mahdi Zamani

Sometimes, though, a stellar couple ends its relationship in a way that’s really disastrous for one of them. A black widow binary, for example, contains a low-mass star, called a brown dwarf, and a rapidly spinning, superdense stellar corpse called a pulsar. The pulsar generates intense radiation and particle winds that blow away the material of the other star over millions to billions of years.

image

Black Hole Beaus

In romance novels, an air of mystery is essential for any love interest, and black holes are some of the most mysterious phenomena in the universe. They also have very dramatic relationships with other objects around them!

Scientists have observed two types of black holes. Supermassive black holes are hundreds of thousands to billions of times our Sun’s mass. One of these monsters, called Sagittarius A* (the “*” is pronounced “star”), sits at the center of our own Milky Way. In a sense, our galaxy and its black hole are childhood sweethearts — they’ve been together for over 13 billion years! All the Milky-Way-size galaxies we’ve seen so far, including our neighbor Andromeda (pictured below), have supermassive black holes at their center!

image

These black-hole-galaxy power couples sometimes collide with other, similar pairs — kind of like a disastrous double date! We’ve never seen one of these events happen before, but scientists are starting to model them to get an idea of what the resulting fireworks might look like.

image

One of the most dramatic and fleeting relationships a supermassive black hole can have is with a star that strays too close. The black hole’s gravitational pull on the unfortunate star causes it to bulge on one side and break apart into a stream of gas, which is called a tidal disruption event.

image

The other type of black hole you often hear about is stellar-mass black holes, which are five to tens of times the Sun’s mass. Scientists think these are formed when a massive star goes supernova. If there are two massive stars in a binary, they can leave behind a pair of black holes that are tied together by their gravity. These new black holes spiral closer and closer until they crash together and create a larger black hole. The National Science Foundation’s LIGO project has detected many of these collisions through ripples in space-time called gravitational waves.

image

Credit: LIGO/T. Pyle

Here’s hoping your Valentine’s Day is more like a peacefully spiraling stellar binary and less like a tidal disruption! Learn how to have a safe relationship of your own with black holes here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

You don't necessarily need fancy equipment to watch one of the sky's most awesome shows: a solar eclipse. With just a few simple supplies, you can make a pinhole camera that allows you to view the event safely and easily. Before you get started, remember: You should never look at the Sun directly without equipment that's specifically designed for solar viewing. Do not use standard binoculars or telescopes to watch the eclipse, as the light could severely damage your eyes. Sunglasses also do NOT count as protection when attempting to look directly at the Sun. Stay safe and still enjoy the Sun's stellar show by creating your very own pinhole camera. It's easy! 

See another pinhole camera tutorial at https://www.jpl.nasa.gov/edu/learn/project/how-to-make-a-pinhole-camera/

Watch this and other eclipse videos on our YouTube channel:  https://youtu.be/vWMf5rYDgpc?list=PL_8hVmWnP_O2oVpjXjd_5De4EalioxAUi

A pinhole camera is just one of many viewing options. Learn more at https://eclipse2017.nasa.gov/safety 

Music credit: Apple of My Eye by Frederik Wiedmann

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Under Pressure

Structural Tests Underway for Top of World's Most Powerful Rocket

image

Testing is underway at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on the agency’s new Space Launch System, the world’s most powerful rocket. SLS and NASA’s Orion spacecraft will enable deep-space missions, beginning a new era of exploration beyond Earth’s orbit.

image

Engineers at Marshall have stacked four qualification articles of the upper part of SLS into a 65-foot-tall test stand using more than 3,000 bolts to hold the hardware together. Tests are currently underway to ensure the rocket hardware can withstand the pressures of launch and flight. 

The integrated tests consists of:

1. Launch Vehicle Adapter

2. Frangible Joint Assembly

3. Interim Cryogenic Propulsion Stage

4. Orion Stage Adapter

image

Engineers are using 28 load pistons to push, pull and twist the rocket hardware, subjecting it to loads up to 40 percent greater than that expected during flight. More than 100 miles of cables are transmitting measurements across 1,900 data channels.

image

The Launch Vehicle Stage Adapter, LVSA, connects the SLS core stage and the Interim Cryogenic Propulsion Stage, ICPS. The LVSA test hardware is 26.5 feet tall, with a bottom diameter of 27.5 feet and a top diameter of 16.8 feet. The frangible joint, located between the LVSA and ICPS, is used to separate the two pieces of hardware during flight, allowing the ICPS to provide the thrust to send Orion onto its mission.

image

The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the big, in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. For this test series, the fuel tanks are filled with nonflammable liquid nitrogen and pressurized with gaseous nitrogen to simulate flight conditions. The nitrogen is chilled to the same temperature as the oxygen and hydrogen under launch conditions.

image

The Orion Stage Adapter connects the Orion spacecraft to the ICPS. It is 4.8 feet tall, with a 16.8-foot bottom diameter and 18-foot top diameter.

image

The first integrated flight for SLS and Orion will allow NASA to use the lunar vicinity as a proving ground to test systems farther from Earth, and demonstrate Orion can get to a stable orbit in the area of space near the moon in order to support sending humans to deep space, including the Journey to Mars. 

For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.


Tags
7 years ago

Today we successfully tested one of our RS-25 engines, four of which will help power our Space Launch System (SLS) to deep space destinations, like Mars! This 500-second engine test concludes a summer of successful hot fire testing for flight controllers at our Stennis Space Center near Bay St. Louis, Mississippi.

The controller serves as the “brain” of the engine, communicating with SLS flight computers to ensure engines are performing at needed levels. The test marked another step toward the nation’s return to human deep-space exploration missions.

We launched a series of summer tests with a second flight controller unit hot fire at the end of May, then followed up with three additional tests. The flight controller tests are critical preparation for upcoming SLS flights to deep space– the uncrewed Exploration Mission-1 (EM-1), which will serve as the first flight for the new rocket carrying an uncrewed Orion spacecraft, and EM-2, which will transport a crew of astronauts aboard the Orion spacecraft. 

Each SLS rocket is powered at launch by four RS-25 engines firing simultaneously and working in conjunction with a pair of solid rocket boosters. The engines generate a combined 2 million pounds of thrust at liftoff. With the boosters, total thrust at liftoff will exceed 8 million pounds!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

The Opportunity to Rove on Mars! 🔴

Today, we’re expressing gratitude for the opportunity to rove on Mars (#ThanksOppy) as we mark the completion of a successful mission that exceeded our expectations.  

Our Opportunity Rover’s last communication with Earth was received on June 10, 2018, as a planet-wide dust storm blanketed the solar-powered rover's location on the western rim of Perseverance Valley, eventually blocking out so much sunlight that the rover could no longer charge its batteries. Although the skies over Perseverance cleared, the rover did not respond to a final communication attempt on Feb. 12, 2019.

As the rover’s mission comes to an end, here are a few things to know about its opportunity to explore the Red Planet.

90 days turned into 15 years!

Opportunity launched on July 7, 2003 and landed on Mars on Jan. 24, 2004 for a planned mission of 90 Martian days, which is equivalent to 92.4 Earth days. While we did not expect the golf-cart-sized rover to survive through a Martian winter, Opportunity defied all odds as a 90-day mission turned into 15 years!

image

The Opportunity caught its own silhouette in this late-afternoon image taken in March 2014 by the rover's rear hazard avoidance camera. This camera is mounted low on the rover and has a wide-angle lens.

Opportunity Set  Out-Of-This-World Records

Opportunity's achievements, including confirmation water once flowed on Mars. Opportunity was, by far, the longest-lasting lander on Mars. Besides endurance, the six-wheeled rover set a roaming record of 28 miles.

image

This chart illustrates comparisons among the distances driven by various wheeled vehicles on the surface of Earth's moon and Mars. Opportunity holds the off-Earth roving distance record after accruing 28.06 miles (45.16 kilometers) of driving on Mars.

It’s Just Like Having a Geologist on Mars

Opportunity was created to be the mechanical equivalent of a geologist walking from place to place on the Red Planet. Its mast-mounted cameras are 5 feet high and provided 360-degree two-eyed, human-like views of the terrain. The robotic arm moved like a human arm with an elbow and wrist, and can place instruments directly up against rock and soil targets of interest. The mechanical "hand" of the arm holds a microscopic camera that served the same purpose as a geologist's handheld magnifying lens.

image

There’s Lots to See on Mars

After an airbag-protected landing craft settled onto the Red Planet’s surface and opened, Opportunity rolled out to take panoramic images. These images gave scientists the information they need to select promising geological targets that tell part of the story of water in Mars' past. Since landing in 2004, Opportunity has captured more than 200,000 images. Take a look in this photo gallery.

image

From its perch high on a ridge, the Opportunity rover recorded this image on March 31, 2016 of a Martian dust devil twisting through the valley below. The view looks back at the rover's tracks leading up the north-facing slope of "Knudsen Ridge," which forms part of the southern edge of "Marathon Valley

There Was Once Water on Mars?!

Among the mission's scientific goals was to search for and characterize a wide range of rocks and soils for clues to past water activity on Mars. In its time on the Red Planet, Opportunity discovered small spheres of the mineral hematite, which typically forms in water. In addition to these spheres that a scientist nicknamed “blueberries,” the rover also found signs of liquid water flowing across the surface in the past: brightly colored veins of the mineral gypsum in rocks, for instance, which indicated water flowing through underground fractures.

image

The small spheres on the Martian surface in this close-up image are near Fram Crater, visited by the Opportunity rover in April 2004.

For more about Opportunity's adventures and discoveries, see: https://go.nasa.gov/ThanksOppy.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
Team Airtek, a group of nine smiling Black HBCU students, stand in front of a television and banner. The group is made up of five female students and four male students. On the television behind them is the name of their project, AIRTEK, with a logo that is a heart with a stylized electrocardiogram readout across it. Credit: NASA

HBCU Students Make Moves with NASA Tech

In September 2023, students at HBCUs participated in a hackathon at the National HBCU Week Conference, where they used NASA’s technologies to create solutions to problems that affect Black communities. The winning team, Team Airtek, proposed a nano-sensor array for medical diagnoses that would give students on HBCU campuses a non-invasive, non-intensive way to test themselves for precursors for diseases and illnesses like diabetes and COVID.

The hackathon they participated in is a modified version of the full NASA Minority University Research and Education Project Innovation and Tech Transfer Idea Competition (MITTIC) that takes place each fall and spring semester at NASA’s Johnson Space Center in Houston.

No matter what you’re studying, you can join the MITTIC competition and come up with new and innovative tech to help your community and the world.

MITTIC could be the beginning of your career pathway: Teams can go on exclusive NASA tours and network with industry experts. Show off your entrepreneurial skills and your team could earn money—and bragging rights.

Don’t wait too long to apply or to share with someone who should apply! The deadline for proposals is Oct. 16, 2023. Apply here: https://microgravityuniversity.jsc.nasa.gov/nasamittic.


Tags
Loading...
End of content
No more pages to load
  • andy202405
    andy202405 liked this · 1 month ago
  • nooramee
    nooramee reblogged this · 1 month ago
  • videorellsvlog
    videorellsvlog reblogged this · 3 months ago
  • countless-screaming-argonauts
    countless-screaming-argonauts liked this · 5 months ago
  • countless-screaming-argonauts
    countless-screaming-argonauts reblogged this · 5 months ago
  • flyingbarc
    flyingbarc liked this · 5 months ago
  • ydontknowwhatidoing
    ydontknowwhatidoing liked this · 7 months ago
  • madgirlsloveblog
    madgirlsloveblog liked this · 1 year ago
  • technowarriorsontumbler
    technowarriorsontumbler liked this · 1 year ago
  • mad-scientist-wannabe
    mad-scientist-wannabe liked this · 1 year ago
  • sdtfhjl
    sdtfhjl liked this · 1 year ago
  • xenia12
    xenia12 liked this · 1 year ago
  • lordvalarezzo
    lordvalarezzo liked this · 1 year ago
  • norzairies
    norzairies liked this · 1 year ago
  • echoesofreverie
    echoesofreverie liked this · 1 year ago
  • thunderstorm-sparks
    thunderstorm-sparks liked this · 1 year ago
  • sarapaprikas-blog
    sarapaprikas-blog liked this · 1 year ago
  • hyodojo
    hyodojo liked this · 1 year ago
  • patric1557
    patric1557 liked this · 1 year ago
  • hauntedcoffeewinner-blog
    hauntedcoffeewinner-blog liked this · 1 year ago
  • thatdamndrifter
    thatdamndrifter reblogged this · 1 year ago
  • thatdamndrifter
    thatdamndrifter liked this · 1 year ago
  • sageminti
    sageminti reblogged this · 1 year ago
  • indecency-ofturkishpeople
    indecency-ofturkishpeople reblogged this · 1 year ago
  • thepixelpenguin
    thepixelpenguin liked this · 1 year ago
  • aleigant
    aleigant liked this · 1 year ago
  • geirhildur
    geirhildur liked this · 1 year ago
  • septicalskeptic
    septicalskeptic liked this · 1 year ago
  • asongpanda1
    asongpanda1 liked this · 1 year ago
  • theredshoes
    theredshoes liked this · 1 year ago
  • terrywaryobituary
    terrywaryobituary liked this · 1 year ago
  • cold-spaghettios
    cold-spaghettios liked this · 1 year ago
  • chuttapanttanagonr
    chuttapanttanagonr liked this · 1 year ago
  • liptonlibrary
    liptonlibrary reblogged this · 1 year ago
  • liptonlibrary
    liptonlibrary liked this · 1 year ago
  • thorow
    thorow liked this · 1 year ago
  • idee-montijo
    idee-montijo liked this · 1 year ago
  • sweatymcswag
    sweatymcswag liked this · 1 year ago
  • jackmedwn
    jackmedwn liked this · 1 year ago
  • poussin-multicolore
    poussin-multicolore liked this · 1 year ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags