Your personal Tumblr journey starts here
SpaceX is scheduled to launch its Dragon spacecraft PACKED with super cool research and technology to the International Space Station June 1 from Kennedy Space Center in Florida. New solar panels, investigations that study neutron stars and even fruit flies are on the cargo list. Let’s take a look at what other bits of science are making their way to the orbiting laboratory 250 miles above the Earth…
New solar panels to test concept for more efficient power source
Solar panels generate power well, but they can be delicate and large when used to power a spacecraft or satellites. This technology demonstration is a solar panel concept that is lighter and stores more compactly for launch than the solar panels currently in use.
Roll-Out Solar Array (ROSA) has solar cells on a flexible blanket and a framework that rolls out like a tape measure and snap into place, and could be used to power future space vehicles.
Investigation to Study Composition of Neutron Stars
Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, contain exotic states of matter that are impossible to replicate in any lab. NICER studies the makeup of these stars, and could provide new insight into their nature and super weird behavior.
Neutron stars emit X-ray radiation, enabling the NICER technology to observe and record information about its structure, dynamics and energetics.
Experiment to Study Effect of New Drug on Bone Loss
When people and animals spend lots of space, they experience bone density loss. In-flight exercise can prevent it from getting worse, but there isn’t a therapy on Earth or in space that can restore bone that is already lost.
The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.
Research to Understand Cardiovascular Changes
Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity.
The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart. Fruit flies are effective model organisms, and we don’t mean on the fashion runway. Want to see how 1,000 bottles of fruit flies were prepared to go to space? Check THIS out.
Space Life-Support Investigation
Currently, the life-support systems aboard the space station require special equipment to separate liquids and gases. This technology utilizes rotating and moving parts that, if broken or otherwise compromised, could cause contamination aboard the station.
The Capillary Structures investigation studies a new method of water recycling and carbon dioxide removal using structures designed in specific shapes to manage fluid and gas mixtures.
Earth-Observation Tools
Orbiting approximately 250 miles above the Earth’s surface, the space station provides pretty amazing views of the Earth. The Multiple User System for Earth Sensing (MUSES) facility hosts Earth-viewing instruments such as high-resolution digital cameras, hyperspectral imagers, and provides precision pointing and other accommodations.
This investigation can produce data that could be used for maritime domain awareness, agricultural awareness, food security, disaster response, air quality, oil and gas exploration and fire detection.
Watch the launch live HERE! For all things space station science, follow @ISS_Research on Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Welcome to NASA! Today, we’re taking you behind-the-scenes for a virtual tour looking at our cutting-edge work and humanity’s destiny in deep space!
Starting at 1:30 p.m., we will host a series of Facebook Live events from each of our 10 field centers across the country. Take a look at where we’ll be taking you…
Our Glenn Research Center in Cleveland, OH will host a tour of its Electric Propulsion Lab. This lab is where we test solar propulsion technologies that are critical to powering spacecraft for our deep-space missions. The Electric Propulsion Laboratory houses two huge vacuum chambers that simulate the space environment.
Our Marshall Space Flight Center in Huntsville, AL will host a tour from a Marshall test stand where structural loads testing is performed on parts of our Space Launch System rocket. Once built, this will be the world’s most powerful rocket and will launch humans farther into space than ever before.
Our Stennis Space Center in Bay St. Louis, MS will take viewers on a tour of their test stands to learn about rocket engine testing from their Test Control Center.
Our Armstrong Flight Research Center in Edwards, CA will host a tour from their aircraft hangar and Simulator Lab where viewers can learn about our X-Planes program. What’s an X-Plane? They are a variety of flight demonstration vehicles that are used to test advanced technologies and revolutionary designs.
Our Johnson Space Center in Houston, TX will take viewers on a virtual exploration trip through the mockups of the International Space Station and inside our deep-space exploration vehicle, the Orion spacecraft!
Our Ames Research Center in California’s Silicon Valley will bring viewers into its Arc Jet Facility, a plasma wind tunnel used to simulate the extreme heat of spacecraft atmospheric entry.
Our Kennedy Space Center in Florida will bring viewers inside the Vehicle Assembly Building to learn about how we’re preparing for the first launch of America’s next big rocket, the Space Launch System (SLS) rocket.
Our Langley Research Center in Hampton, Virginia will bring viewers inside its 14-by-22-foot wind tunnel, where aerodynamic projects are tested.
Our Goddard Space Flight Center in Greenbelt, MD will discuss the upcoming United States total solar eclipse and host its tour from the Space Weather Lab, a large multi-screen room where data from the sun is analyzed and studied.
Our Jet Propulsion Laboratory in Pasadena, CA will bring viewers to the Spacecraft Assembly Facility to learn about robotic exploration of the solar system.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The United Launch Alliance’s Atlas V rocket carrying the Orbital ATK Cygnus module rolls to Cape Canaveral Air Force Station's Launch Pad 41 in this time-lapse video. The rollout is in preparation for the Orbital ATK CRS-7 mission to deliver supplies to the International Space Station.
Launch is currently scheduled for 11:11 a.m. EDT, watch live coverage: http://www.nasa.gov/live
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We recently completed a structural integrity evaluation on the test version of the Orion service module at our Plum Brook Station in Sandusky, Ohio. Designed to ensure the module can withstand launch atop the Space Launch System (SLS) rocket, the battery of tests was conducted in stages over a 16-month period.
The 13-ton European service module will power, propel and cool Orion, while supplying vital oxygen and water to its crew during future missions.
The Powerhouse: Space Launch System and Orion
Our Space Launch System is an advanced launch vehicle that will usher in a new era of human exploration beyond Earth’s orbit. SLS, with its unparalleled power and capabilities, will launch missions to explore deep-space destinations aboard our Orion spacecraft.
What is Orion? Named after one of the largest constellations in the night sky and drawing from more than 50 years of spaceflight research and development, the Orion spacecraft will be the safest, most advanced spacecraft ever built. It will be flexible and capable enough to take astronauts to a variety of deep destinations, including Mars.
Welcome to the Buckeye State
In November 2015, the full-sized test version of the Orion service module arrived at Cleveland Hopkins Airport aboard an Antonov AN-124. After being unloaded from one of the world’s largest transport aircraft, the module was shipped more than 50 miles by truck to Plum Brook for testing.
Spread Your Wings
The first step of the service module’s ground test journey at Plum Brook’s Space Power Facility, saw one of its 24-foot solar array wings deployed to verify operation of the power system. The test confirmed the array extended and locked into place, and all of the wing mechanisms functioned properly.
Can You Hear SLS Now?
The SLS will produce a tremendous amount of noise as it launches and climbs through our atmosphere. In fact, we’re projecting the rocket could produce up to 180 decibels, which is louder than 20 jet engines operating at the same time.
While at the Reverberant Acoustic Test Facility, the service module was hit with more than 150 decibels and 20-10,000 hertz of sound pressure. Microphones were placed inside the test environment to confirm it matched the expected acoustic environment during launch.
After being blasted by sound, it was time to rock the service module, literally.
Shake Without the Bake
Launching atop the most powerful rocket ever built – we’re talking more than eight million pounds of thrust – will subject Orion to stresses never before experienced in spaceflight.
To ensure the launch doesn’t damage any vital equipment, the engineering team utilized the world’s most powerful vibration table to perform nearly 100 different tests, ranging from 2.5 Hz to 100 Hz, on the module in the summer of 2016.
Gotta Keep ‘Em Separated
The team then moved the Orion test article from the vibration table into the high bay for pyroshock tests, which simulated the shock the service module will experience as it separates from the SLS during launch.
Following the sound, vibration and separation tests, a second solar array wing deployment was conducted to ensure the wing continued to properly unfurl and function.
Headed South for the Summer
The ground test phase was another crucial step toward the eventual launch of Exploration Mission-1, as it validated extensive design prep and computer modeling, and verified the spacecraft met our safety and flight requirements.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Soaring through the skies! This view looks from the window of our F-18 support aircraft during a 2016 Orbital ATK air-launch of its Pegasus rocket.
The CYGNSS mission, led by the University of Michigan, will use eight micro-satellite observatories to measure wind speeds over Earth’s oceans, increasing the ability of scientists to understand and predict hurricanes.
CYGNSS launched at 8:37 a.m. EST on Thursday, Dec. 15, 2016 from our Kennedy Space Center in Florida. CYGNSS launched aboard an Orbital ATK Pegasus XL rocket, deployed from Orbital’s “Stargazer” L-1011 carrier aircraft.
Pegasus is a winged, three-stage solid propellant rocket that can launch a satellite into low Earth orbit. How does it work? Great question!
After takeoff, the aircraft (which looks like a commercial airplane..but with some special quirks) flies to about 39,000 feet over the ocean and releases the rocket.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We sent three suborbital sounding rockets right into the auroras above Alaska on the evening of March 1 local time from the Poker Flat Research Range north of Fairbanks, Alaska.
Sounding rockets are suborbital rockets that fly up in an arc and immediately come back down, with a total flight time around 20 minutes.
Though these rockets don’t fly fast enough to get into orbit around Earth, they still give us valuable information about the sun, space, and even Earth itself. Sounding rockets’ low-cost access to space is also ideal for testing instruments for future satellite missions.
Sounding rockets fly above most of Earth’s atmosphere, allowing them to see certain types of light – like extreme ultraviolet and X-rays – that don’t make it all the way to the ground because they are absorbed by the atmosphere. These kinds of light give us a unique view of the sun and processes in space.
The sun seen in extreme ultraviolet light by the Solar Dynamics Observatory satellite.
Of these three rockets, two were part of the Neutral Jets in Auroral Arcs mission, collecting data on winds influenced by the electric fields related to auroras. Sounding rockets are the perfect vehicle for this type of study, since they can fly directly through auroras – which exist in a region of Earth’s upper atmosphere too high for scientific balloons, but too low for satellites.
The third rocket that launched on March 1 was part of the ISINGLASS mission (short for Ionospheric Structuring: In Situ and Ground-based Low Altitude Studies). ISINGLASS included two rockets designed to launch into two different types of auroras in order to collect detailed data on their structure, with the hope of better understanding the processes that create auroras. The initial ISINGLASS rocket launched a few weeks earlier, on Feb. 22, also from the Poker Flat Research Range in Alaska.
Auroras are caused when charged particles trapped in Earth’s vast magnetic field are sent raining down into the atmosphere, usually triggered by events on the sun that propagate out into space.
Team members at the range had to wait until conditions were just right until they could launch – including winds, weather, and science conditions. Since these rockets were studying aurora, that means they had to wait until the sky was lit up with the Northern Lights.
Regions near the North and South Pole are best for studying the aurora, because the shape of Earth’s magnetic field naturally funnels aurora-causing particles near the poles.
But launching sensitive instruments near the Arctic Circle in the winter has its own unique challenges. For example, rockets have to be insulated with foam or blankets every time they’re taken outside – including while on the launch pad – because of the extremely low temperatures.
For more information on sounding rockets, visit www.nasa.gov/soundingrockets.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The tenth SpaceX cargo resupply mission launched to the International Space Station on Feb. 18, and is carrying science ranging from protein crystal growth studies to Earth science payloads. Here’s a rundown of some of the highlights heading to the orbiting laboratory.
The CASIS PCG 5 investigation will crystallize a human monoclonal antibody, developed by Merck Research Labs, that is currently undergoing clinical trials for the treatment of immunological disease. Results from this investigation have the potential to improve the way monoclonal antibody treatments are administered on Earth.
Without proteins, the human body would be unable to repair, regulate or protect itself. Crystallizing proteins provides better views of their structure, which helps scientists to better understand how they function. Often times, proteins crystallized in microgravity are of higher quality than those crystallized on Earth. LMM Biophysics 1 explores that phenomena by examining the movement of single protein molecules in microgravity. Once scientists understand how these proteins function, they can be used to design new drugs that interact with the protein in specific ways and fight disease.
Much like LMM Biophysics 1, LMM Biophysics 3 aims to use crystallography to examine molecules that are too small to be seen under a microscope, in order to best predict what types of drugs will interact best with certain kinds of proteins. LMM Biophysics 3 will look specifically into which types of crystals thrive and benefit from growth in microgravity, where Earth’s gravity won’t interfere with their formation. Currently, the success rate is poor for crystals grown even in the best of laboratories. High quality, space-grown crystals could improve research for a wide range of diseases, as well as microgravity-related problems such as radiation damage, bone loss and muscle atrophy.
Nanobiosym Predictive Pathogen Mutation Study (Nanobiosym Genes) will analyze two strains of bacterial mutations aboard the station, providing data that may be helpful in refining models of drug resistance and support the development of better medicines to counteract the resistant strains.
During the Microgravity Expanded Stem Cells investigation, crew members will observe cell growth and morphological characteristics in microgravity and analyze gene expression profiles of cells grown on the station. This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.
The Lightning Imaging Sensor will measure the amount, rate and energy of lightning as it strikes around the world. Understanding the processes that cause lightning and the connections between lightning and subsequent severe weather events is a key to improving weather predictions and saving life and property.
From the vantage of the station, the LIS instrument will sample lightning over a wider geographical area than any previous sensor.
Future robotic spacecraft will need advanced autopilot systems to help them safely navigate and rendezvous with other objects, as they will be operating thousands of miles from Earth.
The Raven (STP-H5 Raven) studies a real-time spacecraft navigation system that provides the eyes and intelligence to see a target and steer toward it safely. Research from Raven can be applied toward unmanned vehicles both on Earth and in space, including potential use for systems in NASA’s future human deep space exploration.
SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of Earth’s atmosphere.
These measurements will allow national and international leaders to make informed policy decisions regarding the protection and preservation of Earth’s ozone layer. Ozone in the atmosphere protects Earth’s inhabitants, including humans, plants and animals, from harmful radiation from the sun, which can cause long-term problems such as cataracts, cancer and reduced crop yield.
Tissue Regeneration-Bone Defect (Rodent Research-4) a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studies what prevents other vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions impact the process.
Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30% of the patient.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the nation’s next generation of geostationary weather satellites. It is the first of four satellites to be launched for the National Oceanic and Atmospheric Administration (NOAA).
The GOES-R satellite will provide advanced imaging with increased spatial resolution and faster coverage for more accurate forecasts, real-time mapping of lightning activity and improved monitoring of solar activity. For the first time, GOES-R will be able to monitor the Earth in near real-time.
Once in geostationary orbit (the orbit around the Earth’s equator), it will provide images of weather patterns and severe storms across the continental U.S. as regularly as every five minutes. Images of smaller, more detailed areas, where storm activity is present, will be taken as frequently as every 30 seconds.
These images can be used to aid in formulating regular forecasts, term forecasting, such as seasonal predictions and drought outlooks.
In addition, the satellite will constantly monitor space weather conditions, such as solar flares, to provide advance notice of potential communication and navigation disruptions.
The satellite will also assist researchers in understanding the interactions between land, oceans, the atmosphere and climate.
Improve hurricane tracking and intensity forecasts
Increase thunderstorm and tornado warning lead time
Give earlier warning of ground lightning strike hazards
Improve detection of heavy rainfall and flash flooding risks
Improve air quality warnings and alerts
Give better fire detection and intensity estimation
Improve solar flare warnings for communications and navigation disruptions
Give more accurate monitoring of energetic particles responsible for radiation hazards to humans and spacecraft
Improve monitoring of space weather to get better geomagnetic storm forecasting.
The better we can predict what’s coming, the better we can prepare.
The GOES-R satellite is targeted for a launch on Saturday, Nov. 19, aboard a United Launch Alliance Atlas V rocket.
The one-hour launch window opens at 5:42 p.m. EST. Liftoff will occur from our Kennedy Space Center in Florida.
Join us leading up to launch by tuning in during the following times:
Thursday, Nov. 17 Prelaunch News Conference - 1 p.m. EST Watch HERE
GOES-R Mission Briefing - 2 p.m. EST Watch HERE
Friday, Nov. 18 GOES-R Social Presentations – 1:30 p.m. EST Watch HERE
Saturday, Nov. 19 NASA Edge Prelaunch Program – 3:45 p.m. EST Watch HERE
Launch Coverage & Commentary – 4:45 p.m. EST Watch HERE
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Monday, Oct. 17, we’re launching cargo to the International Space Station, and if you live on the east coast, there’s a chance you can catch a glimpse!
The above map shows the areas on the east coast where launch may be visible, depending on cloud conditions.
Liftoff is currently scheduled for 7:40 p.m. EDT from our Wallops Flight Facility in Virginia.
The launch of Orbital ATK’s Cygnus spacecraft will carry around 5,100 pounds of supplies and research materials to the crew on the space station.
Not in the launch viewing area? No worries! Full launch coverage will be available starting at 6:45 p.m. EDT HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Monday, Oct. 17, Orbital ATK is scheduled to send new science experiments to the International Space Station.
The Cygnus spacecraft will blast off from our Wallops Flight Facility in Virginia at 7:40 p.m. EDT carrying more than 5,100 pounds of science, supplies and equipment.
Let’s take a look at a few of these experiments:
Low-temperature fires with no visible flames are known as cool flames. The Cool flames experiment examines these low-temperature combustion of droplets of a variety of fuels and additives in low gravity.
Why are we studying this? Data from this experiment could help scientists develop more efficient advanced engines and new fuels for use in space and on Earth.
Light plays a powerful role in our daily, or circadian, rhythms. Astronauts aboard the space station experience multiple cycles of light and dark every 24 hours, which, along with night shifts and the stresses of spaceflight, can affect their sleep quantity and quality.
The Lighting Effects investigation tests a new lighting system aboard the station designed to enhance crew health and keep their body clocks in proper sync with a more regular working and resting schedule.
Why are we studying this? Lighting manipulation has potential as a safe, non-pharmacological way to optimize sleep and circadian regulation on space missions. People on Earth, especially those who work night shifts, could also improve alertness and sleep by adjusting lighting for intensity and wavelength.
A user-friendly tablet app provides astronauts with a new and faster way to collect a wide variety of personal data. The EveryWear experiment tests use of this French-designed technology to record and transmit data on nutrition, sleep, exercise and medications. Astronauts use the app to complete questionnaires and keep medical and clinical logs. They wear a Smartshirt during exercise that records heart activity and body positions and transmits these data to the app. Finally, rather than manually recording everything that they eat, crew members scan barcodes on food packets to collect real-time nutritional data.
Why are we studying this? EveryWear has the potential for use in science experiments, biomedical support and technology demonstrations.
Outside the Earth’s magnetic field, astronauts are exposed to space radiation that can reduce immune response, increase cancer risk and interfere with electronics.
The Fast Neutron Spectrometer (FNS) experiment will help scientists understand high-energy neutrons, part of the radiation exposure experienced by crews during spaceflight, by studying a new technique to measure electrically neutral neutron particles.
Why are we studying this? This improved measurement will help protect crews on future exploration missions, like our journey to Mars.
Ahead of launch, there will be various opportunities to learn more about the mission:
What’s on Board Science Briefing Saturday, Oct. 15 at 4 p.m. EDT Scientists and researchers will discuss some of the experiments being delivered to the station. Watch HERE.
Prelaunch News Briefing Saturday, Oct. 15 at 6 p.m. EDT Mission managers will provide an overview and status of launch operations. Watch HERE.
LAUNCH!!! Monday, Oct. 17 coverage begins at 6:45 p.m. EDT Watch live coverage and liftoff! Launch is scheduled for 7:40 p.m. EDT. Watch HERE.
Facebook Live Starting at 7:25 p.m. EDT you can stream live coverage of the launch on NASA’s Facebook page. Watch HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Two years after selecting the next generation of American spacecraft and rockets that will launch astronauts to the International Space Station, engineers and spaceflight specialists across our Commercial Crew Program, Boeing and SpaceX are putting in place the elements required for successful missions.
1. The Goal
The goal of our Commercial Crew Program is to return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety requirements. To accomplish this goal, we are taking a unique approach by asking private companies, Boeing and SpaceX, to develop human spaceflight systems to take over the task of flying astronauts to station.
2. Multi-User Spaceport
Boeing and SpaceX, like other commercial aerospace companies, are capitalizing on the unique experience and infrastructure along the Space Coast at our Kennedy Space Center and Cape Canaveral Air Force Station. Kennedy has transitioned from a government-only launch complex to a premier multi-user spaceport. In the coming years, the number of launch providers along the Space Coast is expected to more than double.
3. Innovation
Our expertise has been joined with industry innovations to produce the most advanced spacecraft to ever carry humans into orbit. Each company is developing its own unique systems to meet our safety requirements, and once certified by us, the providers will begin taking astronauts to the space station.
4. Research
With two new spacecraft that can carry up to four astronauts to the International Space Station with each of our missions, the number of resident crew will increase and will double the amount of time dedicated to research. That means new technologies and advances to improve life here on Earth and a better understanding of what it will take for long duration, deep space missions, including to Mars.
5. Crew Training
Astronauts Bob Behnken, Eric Boe, Doug Hurley and Suni Williams have been selected to train to fly flight tests aboard the Boeing CST-100 Starliner and SpaceX Crew Dragon.
The veteran crew have sent time in both spacecraft evaluating and training on their systems. Both providers are responsible for developing every aspect of the mission, from the spacesuits and training, to the rocket and spacecraft.
6. Launch Abort System
Boeing and SpaceX will equip their spacecraft with launch abort systems to get astronauts out of danger . . . FAST!
7. Expedited Delivery
Time-sensitive, critical experiments performed in orbit will be returned to Earth aboard commercial crew spacecraft, and returned to the scientists on Earth in hours, instead of days – before vital results are lost. That means better life and physical science research results, like VEGGIE, heart cells, and protein crystals.
8. Lifeboat
The spacecraft will offer safe and versatile lifeboats for the crew of the space station, whether an emergency on-orbit causes the crew to shelter for a brief time in safety, or leave the orbiting laboratory altogether. Learn more HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our OSIRIS-REx spacecraft will travel to a near-Earth asteroid, called Bennu, where it will collect a sample to bring back to Earth for study.
But why was Bennu chosen as the target destination asteroid for OSIRIS-REx? The science team took into account three criteria: accessibility, size and composition.
Accessibility: We need an asteroid that we can easily travel to, retrieve a sample from and return to Earth, all within a few years time. The closest asteroids are called near-Earth objects and they travel within 1.3 Astronomical Units (AU) of the sun. For those of you who don’t think in astronomical units…one Astronomical Unit is approximately equal to the distance between the sun and the Earth: ~93 million miles.
For a mission like OSIRIS-REx, the most accessible asteroids are somewhere between 0.08 – 1.6 AU. But we also needed to make sure that those asteroids have a similar orbit to Earth. Bennu fit this criteria! Check!
Size: We need an asteroid the right size to perform two critical portions of the mission: operations close to the asteroid and the actual sample collection from the surface of the asteroid. Bennu is roughly spherical and has a rotation period of 4.3 hours, which is in our size criteria. Check!
Composition: Asteroids are categorized by their spectral properties. In the visible and infrared light minerals have unique signatures or colors, much like fingerprints. Scientists use these fingerprints to identify molecules, like organics. For primitive, carbon-rich asteroids like Bennu, materials are preserved from over 4.5 billion years ago! We’re talking about the start of the formation of our solar system here! These primitive materials could contain organic molecules that may be the precursors to life here on Earth, or elsewhere in our solar system.
Thanks to telescopic observations in the visible and the infrared, as well as in radar, Bennu is currently the best understood asteroid not yet visited by a spacecraft.
All of these things make Bennu a fascinating and accessible asteroid for the OSIRIS-REx mission.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
There are interesting asteroid characters in our solar system, including an asteroid that has its own moon and even one that is shaped like a dog bone! Our OSIRIS-REx mission launches at 7:05 p.m. EDT today and will travel to asteroid Bennu.
Scientists chose Bennu as the target of the OSIRIS-REx mission because of its composition, size and proximity to Earth. Bennu is a rare B-type asteroid (primitive and carbon-rich), which is expected to have organic compounds and water-bearing minerals like clays.
Our OSIRIS-REx mission will travel to Bennu and bring a small sample back to Earth for study.
When talking about asteroids, there are some terms scientists use that might not be in your typical vocabulary…but we’ll help with that!
Orbital Eccentricity: This number describes the shape of an asteroid’s orbit by how elliptical it is. For asteroids in orbit around the sun, eccentricity is a number between 0 and 1, with 0 being a perfectly circular orbit and 0.99 being a highly elliptical orbit.
Inclination: The angle, in degrees, of how tilted an asteroid’s orbit is compared to another plane of reference, usually the plane of the Earth’s orbit around the sun.
Orbital Period: The number of days it takes for an asteroid to revolve once around the sun. For example, the Earth’s orbital period is 365 days.
Perihelion Distance: The distance between an asteroid and the sun when the asteroid is closest to the sun.
Aphelion Distance: The distance between the asteroid and the sun when the asteroid is farthest away from the sun.
Astronomical unit: A distance unit commonly used to describe orbits of objects around the sun. The distance from the Earth to the sun is one astronomical unit, or 1 AU, equivalent to about 93 million miles or 150 million kilometers.
Diameter: A measure of the size of an asteroid. It is the length of a line from a point on the surface, through the center of the asteroid, extending out to the opposite surface. Irregularly shaped asteroids may have different diameters depending on which direction they are measured.
Rotation Period: The time it takes for an asteroid to complete one revolution around its axis of rotation. For example, the rotation period of the Earth is approximately 24 hours, or 1 day.
Spectral Type: The classification of an asteroid, based on a measurement of the light reflected by the asteroid.
Watch live launch coverage of OSIRIS-REx to asteroid Bennu starting at 5:30 p.m, on NASA TV: http://www.nasa.gov/nasatv
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, let us break it down for you. Here are a few things you should know this week:
1. Closeup of a King
For the first time since it entered orbit around Jupiter in July, our Juno spacecraft has flown close to the king of planets—this time with its eyes wide open. During the long, initial orbit, Juno mission managers spent time checking out the spacecraft "from stem to stern," but the science instruments were turned off as a precaution. During this latest pass, Juno's camera and other instruments were collecting data the whole time. Initial reports show that all went well, and the team has released a new close-up view that Juno captured of Jupiter's north polar region. We can expect to see more close-up pictures of Jupiter and other data this week.
+Check in with Juno
2. Getting Ready to Rocket
Our OSIRIS-REx mission leaves Earth next week, the first leg of a journey that will take it out to an asteroid called Bennu. The mission will map the asteroid, study its properties in detail, then collect a physical sample to send back home to Earth. The ambitious endeavor is slated to start off on Sept. 8.
+See what it takes to prep for a deep space launch
3. New Moon Rising
The Lunar Reconnaissance Orbiter (LRO) has already mapped the entire surface of Earth's moon in brilliant detail, but the mission isn't over yet. Lunar explorers still have questions, and LRO is poised to help answer them.
+See what’s next for the mission
4. A Mock-Eclipse Now
We don't have to wait until next year to see the moon cross in front of the sun. From its vantage point in deep space, our Solar Dynamics Observatory (SDO) sometimes sees just that. Such an event is expected on Sept. 1.
+See the latest sun pictures from SDO
5. Jupiter’s Cousins
Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around. Astronomers say that in our galaxy alone, a billion or more such Jupiter-like worlds could be orbiting stars other than our sun. And we can use them to gain a better understanding of our solar system and our galactic environment, including the prospects for finding life.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Do you know what the structural backbone is of our new rocket, the Space Launch System? If you answered the core stage, give yourself a double thumbs up! Or better yet, have astronaut Scott Kelly do it!
We’re on a journey to Mars. For bolder missions to deep space, we need a big, powerful rocket like SLS to take astronauts in the Orion spacecraft to places we've never gone before. The core stage is a major part of that story, as it will house the fuel and avionics systems that will power and guide the rocket to those new destinations beyond Earth’s orbit. Here's how:
It's Big, and It's Fast.
The core stage will be the largest rocket stage ever built and is under construction right now at our Michoud Assembly Facility in New Orleans. It will stand at 212 feet tall and weigh more than 2.3 million pounds with propellant. That propellant is cryogenic liquid hydrogen and liquid oxygen that will feed the vehicle’s RS-25 engines. In just 8.5 minutes, the core stage will reach Mach 23, which is faster than 17,000 mph!
It's Smart.
Similar to a car, the rocket needs all the equipment necessary for the "drive" to deep space. The core stage will house the vehicle’s avionics, including flight computers, instrumentation, batteries, power handling, sensors and other electronics. That's a lot of brain power behind those orange-clad aluminum walls. *Fun fact: Orange is the color of the rocket's insulation.
It's a Five-Parter.
The core stage is made up of five parts. Starting from the bottom is the engine section, which will deliver the propellants to the four RS-25 engines. It also will house avionics to steer the engines, and be an attachment point for the two, five-segment solid rocket boosters. The engine section for the first SLS flight has completed welding and is in the final phases of manufacturing at Michoud.
Next up is the liquid hydrogen tank. It will hold 537,000 gallons of liquid hydrogen cooled to -423 degrees Fahrenheit. Right now, engineers are building the tank for the first SLS mission. It will look very similar to the qualification test article that just finished welding at Michoud. That's an impressive piece of rocket hardware!
The next part of the core stage is the intertank, which will join the propellant tanks. It has to be super strong because it is the attachment point for the boosters and absorbs most of the force when they fire 3.6 million pounds of thrust each. It's also a "think tank" of sorts, as it holds the SLS avionics and electronics. The intertank is even getting its own test structure at our Marshall Space Flight Center in Huntsville, Alabama.
And then there's the liquid oxygen tank. It will store 196,000 gallons of liquid oxygen cooled to -297 degrees. If you haven't done the math, that's 733,000 gallons of propellant for both tanks, which is enough to fill 63 large tanker trucks. Toot, toot. Beep, beep! A confidence version of the tank has finished welding at Michoud, and it's impressive. Just ask this guy.
The topper of the core stage is the forward skirt. Funny name, but serious hardware. It's home to the flight computers, cameras and avionics. The avionics system is being tested right now in a half-ring structure at the Marshall Center.
You can click here for more SLS core stage facts. We'll continue building, and see you at the launch pad for the first flight of SLS with Orion in 2018!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Cargo and supplies are scheduled to launch to the International Space Station on Monday, July 18 at 12:45 a.m. EDT. The SpaceX Dragon cargo spacecraft will liftoff from our Kennedy Space Center in Florida.
Among the arriving cargo is the first of two international docking adapters, which will allow commercial spacecraft to dock to the station when transporting astronauts in the near future as part of our Commercial Crew Program.
This metallic ring, big enough for astronauts and cargo to fit through represents the first on-orbit element built to the docking measurements that are standardized for all the spacecraft builders across the world.
Its first users are expected to be the Boeing Starliner and SpaceX Crew Dragon spacecraft, which are both now in development.
Experiments launching to the station range from research into the effects of microgravity on the human body, to regulating temperature on spacecraft. Take a look at a few:
A Space-based DNA Sequencer
DNA testing aboard the space station typically requires collecting samples and sending them back to Earth to be analyzed. Our Biomolecule Sequencer Investigation will test a new device that will allow DNA sequencing in space for the first time! The samples in this first test will be DNA from a virus, a bacteria and a mouse.
How big is it? Picture your smartphone…then cut it in half. This miniature device has the potential to identify microbes, diagnose diseases and evaluate crew member health, and even help detect DNA-based life elsewhere in the solar system.
OsteoOmics
OsteoOmics is an experiment that will investigate the molecular mechanisms that dictate bone loss in microgravity. It does this by examining osteoblasts, which form bone; and osteoclasts, which dissolves bone. New ground-based studies are using magnetic levitation equipment to simulate gravity-related changes. This experiment hopes to validate whether this method accurately simulates the free-fall conditions of microgravity.
Results from this study could lead to better preventative care or therapeutic treatments for people suffering bone loss, both on Earth and in space!
Heart Cells Experiment
The goals of the Effects of Microgravity on Stem Cell-Derived Heart Cells (Heart Cells) investigation include increasing the understanding of the effects of microgravity on heart function, the improvement of heart disease modeling capabilities and the development of appropriate methods for cell therapy for people with heart disease on Earth.
Phase Change Material Heat Exchanger (PCM HX)
The goal of the Phase Change Material Heat Exchanger (PCM HX) project is to regulate internal spacecraft temperatures. Inside this device, we're testing the freezing and thawing of material in an attempt to regulate temperature on a spacecraft. This phase-changing material (PCM) can be melted and solidified at certain high heat temperatures to store and release large amounts of energy.
Live coverage of the SpaceX launch will be available starting at 11:30 p.m. EDT on Sunday, July 17 via NASA Television.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On July 7, three crew members launched from Earth; headed to their new home on the International Space Station.
Crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) will spend approximately four months on the orbital complex, returning to Earth in October.
Photo Credit: (NASA/Bill Ingalls)
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Among the newest crew on the International Space Station is U.S. astronaut Kate Rubins, who will assume the role of Flight Engineer for Expeditions 48 and 49. Here are five things you should know about her:
1. She was chosen from a pool of over 3,500 applicants to receive a spot on our 2009 astronaut training class.
After being selected, Rubins spent years training at Johnson Space Center to become an astronaut. She learned how to use the complex station systems, perform spacewalks, exercise in space and more. Some training even utilized virtual reality.
2. She has a degree in cancer biology.
After earning a Bachelor of Science degree in Molecular Biology from the University of California, San Diego in 1999, Rubins went on to receive a doctorate in Cancer Biology from Stanford University Medical School Biochemistry Department and Microbiology and Immunology Department in 2005. In other words, she’s extremely smart.
3. Her research has benefited humanity.
Rubins helped to create therapies for Ebola and Lassa viruses by conducting research collaboratively with the U.S. Army. She also aided development of the first smallpox infection model with the U.S. Army Medical Research Institute of Infectious Diseases and the Centers for Disease Control and Prevention. NBD. It will be exciting to see the research come out of a mission with a world-class scientist using a world-class, out-of-this-world laboratory!
4. She is scheduled to be the first person to sequence DNA in space.
During her time at the space station, Rubins will participate in several science experiments. Along with physical science, Earth and space science and technology development work, she will conduct biological and human research investigations. Research into sequencing the first genome in microgravity and how the human body’s bone mass and cardiovascular systems are changed by living in space are just two examples of the many experiments in which Rubins may take part.
5. In her spare time, she enjoys scuba diving and triathlons...among other things.
Rubins was on the Stanford Triathlon team, and also races sprint and Olympic distance. She is involved with health care/medical supply delivery to Africa and started a non-profit organization to bring supplies to Congo. Her recent pursuits involve flying airplanes and jumping out of them -- not simultaneously.
Rubins is scheduled to arrive at the International Space Station at 12:12 a.m. Saturday, July 9. After her launch on Wednesday, July 6, the three crew members traveled 2 days before docking to the space station’s Rassvet module.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’re ready for another year of sky-high fun, literally, as student teams launch nearly 50 high-powered rockets during the 16th annual Student Launch, April 16, near NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Hundreds of students from high schools, colleges and universities across 22 states have spent the past several months designing, fabricating and testing single-stage rockets and autonomous ground support systems. So, what makes this event so great? Start here to find out as we list our eight favorite things.
1. A Mile-High Target
Setting goals is a part of life, and so, too, is this competition. Teams will attempt to launch their rocket to an altitude of one mile, or 5,280 feet. That'll earn the maximum number of altitude points of 5,280. But, if teams go over or under, there's a penalty. Teams lose 2 points for every foot over and 1 point for every foot under.
2. Return of the Mars Ascent Vehicle Challenge
Back for a second consecutive year – the MAV challenge runs parallel with Student Launch -- requiring teams to design an autonomous system capable of retrieving and storing a mock Martian sample into their rocket. Sponsored by the Centennial Challenges program – our citizen prize program -- MAV focuses on designing rockets for future sample return missions to Mars.
3. Why, Yes, It Really Is Rocket Science
Static stability margin, thrust-to-weight ratios and ammonium perchlorate composite propellants may seem like a foreign language, but it’s just everyday lingo for these young rocket scientists. In addition to designing and fabricating a rocket, students hone skills by completing electrical wiring and operating computer-aided software for launching rockets and analyzing payloads.
4. Putting Rocketry Skills to the Test
During launch week, we host a “Rocket Fair,” where each team gives a technical presentation about their rocket and any autonomous systems, to hundreds of engineers and team members from NASA, corporate sponsor Orbital ATK of Promontory, Utah, and the media. Doing so provides students an opportunity to gain valuable feedback from real rocket scientists and engineers.
5. Hard Work Pays Off, Literally
Yes, a year’s worth of bragging rights are on the line, but so, too, is some cold, hard cash. Orbital ATK offers an overall cash prize of $5,000 to the highest-ranking college/university team to meet the Student Launch objectives. Plus, the MAV challenge offers a share of $50,000 for completion of its objectives.
6. Safety, Safety and More Safety
Teams complete a lengthy series of comprehensive flight and safety reviews, all overseen by our staff, engineers and scientists. Multiple reviews are scheduled throughout the 8-month-long design process, as well as during the launch week at Marshall Space Flight Center. These reviews mirror the engineering design lifecycle used by our workforce.
7. Celebrate Good Times
After the smoke clears from rocket launches, teams gather for a well-earned evening of celebration. The awards banquet -- held at the U.S. Space & Rocket Center in Huntsville, Alabama, and funded by Orbital ATK -- recognizes teams with awards including Best Design, Altitude, Safety and more.
8. Teams Make Dreams Come True
More than just a friendly competition, Student Launch and MAV Challenge provide long-lasting life experiences outside of the classroom. Students benefit from working as a team, applying STEM skills and overcoming technical obstacles -- all aspects related to the success of our work.
The MAV Challenge and Student Launch are open to the public and will stream live on line at: http://www.ustream.tv/channel/nasa-msfc
For more details, rules, photos from previous events, and links to social media accounts providing real-time updates, visit: http://www.nasa.gov/education/studentlaunch
For more information about the Centennial Challenges MAV Challenge, visit: http://www.nasa.gov/winit
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
SpaceX is scheduled to launch its Dragon spacecraft into orbit on April 8, which will be the company’s eighth mission under our Commercial Resupply Services contract. This flight will deliver science and supplies to the International Space Station.
The experiments headed to the orbiting laboratory will help us test the use of an expandable space habitat in microgravity, assess the impact of antibodies on muscle wasting in a microgravity environment, use microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease. Here’s an in-depth look at each of them:
Space is in limited supply on the International Space Station, but with BEAM, the amount of crew space could be expanded! BEAM is an experimental expandable capsule that attaches to the space station. After installation, it will expand to roughly 13-feet long and 10.5 feet in diameter, which would provide a large volume where a crew member could enter. During the two-year test mission, astronauts will enter the module for a few hours three-to-four times a year to retrieve sensor data and conduct assessments of the module’s condition.
Why? Expandable habitats greatly decrease the amount of transport volume at launch for future space missions. They not only take up less room on a rocket, but also provide greatly enhanced space for living and working once they are set up.
The Rodent Research-3-Eli Lilly investigation will use mice as a model for human health to study whether certain drugs might prevent muscle or bone loss while in microgravity.
Why? Crew members experience significant decreases in their bone density and muscle mass during spaceflight if they do not get enough exercise during long-duration missions. The results could expand scientist’s understanding of muscle atrophy and bone loss in space, by testing an antibody that has been known to prevent muscle wasting in mice on Earth.
The Microbial Observatory-1 experiment will track and monitor changes to microbial flora over time on the space station.
Why? Obtaining data on these microbial flora could help us understand how such microbes could affect crew health during future long-duration missions.
The Micro-10 investigation will study how the stress of microgravity triggers changes in growth, gene expression, physical responses and metabolism of a fungus called Aspergillus nidulans.
Why? This experiment will study fungi in space for the purpose of potentially developing new medicine for use both in space and on Earth. The stressfull environment of space causes changes to all forms of life, from bacteria and fungi, to animals and people.
Genes in Space-1 is a student-designed experiment that will test whether the polymerase chain reaction (PCR) — which is a fast and relatively inexpensive technique that can amplify or “photocopy” small segments of DNA — could be used to study DNA alterations that crew experience during spaceflight.
Why? In space, the human immune system’s function is altered. Findings from this experiment could help combat some of the DNA changes that crew onboard space station experience while on orbit.
Nano science and nanotechnology are the study and application of exceptionally small things and can be used across the fields of medicine, biology, computer science and many others. The way fluid moves is very different on this small scale, so scientists want to know how microparticles might interact. The Microchannel Diffusion investigation simulates these interactions by studying them at a larger scale, the microscopic level. This is only possible on the orbiting laboratory, where Earth’s gravity is not strong enough to interact with the molecules in a sample, so they behave more like they would at the nanoscale.
Why? Nanofluidic sensors could measure the air in the space station, or used to deliver drugs to specific places in the body, among other potential uses. Knowledge learned from this investigation may have implications for drug delivery, particle filtration and future technological applications for space exploration.
CASIS PCG 4 is made up of two investigations that both leverage the microgravity environment in the growth of protein crystals and focus on structure-based drug design (SBDD). Growing crystals in microgravity avoids some of the obstacles they face on Earth, such as sedimentation.
Why? SBDD is an integral component in the drug discovery and development process. It relies on three-dimensional, structural information provided by the protein crystallography to inform the design of more potent, effective and selective drugs.
The Dragon capsule will launch on a Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.
Launch coverage begins at 3:15 p.m. EDT, with launch scheduled for 4:43 p.m. Watch live online on NASA Television: nasa.gov/nasatv
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today, three new crew members will launch to the International Space Station. NASA astronaut Jeff Williams, along with Russian cosmonauts Alexey Ovchinin and Oleg Skripochka, are scheduled to launch from the Baikonur Cosmodrome in Kazakhstan at 5:26 p.m. EDT. The three Expedition 47 crew members will travel in a Soyuz spacecraft, rendezvousing with the space station six hours after launch.
Traveling to the International Space Station is an exciting moment for any astronaut. But what if you we’re launching to orbit AND knew that you were going to break some awesome records while you were up there? This is exactly what’s happening for astronaut Jeff Williams.
This is a significant mission for Williams, as he will become the new American record holder for cumulative days in space (with 534) during his six months on orbit. The current record holder is astronaut Scott Kelly, who just wrapped up his one-year mission on March 1.
On June 4, Williams will take command of the station for Expedition 48. This will mark his third space station expedition…which is yet another record!
You can! Live coverage will begin at 4:30 p.m. EDT on NASA Television, with launch at 5:26 p.m.
Tune in again at 10:30 p.m. to watch as the Soyuz spacecraft docks to the space station’s Poisk module at 11:12 p.m.
Hatch opening coverage will begin at 12:30 a.m., with the crew being greeted around 12:55 a.m.
NASA Television: https://www.nasa.gov/nasatv
Astronaut Jeff Williams will be documenting his time on orbit, and you can follow along on Facebook, Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
CubeSats are a class of research spacecraft called nanosatellites. They provide low-cost opportunities for small satellite payloads to fly on rockets planned for upcoming launches. Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations here at NASA.
Fourteen miniature satellites were deployed from the International Space Station earlier this week. Two of the CubeSats were Danish and have communication and ship signal tracking capabilities. The remaining are Dove satellites from Planet Labs and will take images of Earth from space.
On Thursday, Oct. 8, thirteen CubeSats are scheduled to launch aboard a United Launch Alliance Atlas V rocket at 8:49 a.m. EDT. Watch live on NASA TV starting at 8:29 a.m. http://www.nasa.gov/nasatv
To learn more about tomorrow’s launch, watch NASA Television today, Oct. 7 at 1 p.m. and 2 p.m. EDT. The briefings will highlight the growing importance of CubeSats in space exploration.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com