Are We Able To Take A Picture Of It

Are we able to take a picture of it

Yup and I hope you share your photos with us on the NASA Eclipse Flicker page! https://www.flickr.com/groups/nasa-eclipse2017/ You can find out about how to safely take photos of the eclipse at https://www.nasa.gov/feature/goddard/2017/five-tips-from-nasa-for-photographing-the-total-solar-eclipse-on-aug-21 Good luck! 

More Posts from Nasa and Others

6 years ago

Frozen: Ice on Earth and Well Beyond

image

Icy Hearts: A heart-shaped calving front of a glacier in Greenland (left) and Pluto's frozen plains (right). Credits: NASA/Maria-Jose Viñas and NASA/APL/SwRI

From deep below the soil at Earth’s polar regions to Pluto’s frozen heart, ice exists all over the solar system...and beyond. From right here on our home planet to moons and planets millions of miles away, we’re exploring ice and watching how it changes. Here’s 10 things to know:

1. Earth’s Changing Ice Sheets

image

An Antarctic ice sheet. Credit: NASA

Ice sheets are massive expanses of ice that stay frozen from year to year and cover more than 6 million square miles. On Earth, ice sheets extend across most of Greenland and Antarctica. These two ice sheets contain more than 99 percent of the planet’s freshwater ice. However, our ice sheets are sensitive to the changing climate.

Data from our GRACE satellites show that the land ice sheets in both Antarctica and Greenland have been losing mass since at least 2002, and the speed at which they’re losing mass is accelerating.

2. Sea Ice at Earth’s Poles

image

Earth’s polar oceans are covered by stretches of ice that freezes and melts with the seasons and moves with the wind and ocean currents. During the autumn and winter, the sea ice grows until it reaches an annual maximum extent, and then melts back to an annual minimum at the end of summer. Sea ice plays a crucial role in regulating climate – it’s much more reflective than the dark ocean water, reflecting up to 70 percent of sunlight back into space; in contrast, the ocean reflects only about 7 percent of the sunlight that reaches it. Sea ice also acts like an insulating blanket on top of the polar oceans, keeping the polar wintertime oceans warm and the atmosphere cool.

Some Arctic sea ice has survived multiple years of summer melt, but our research indicates there’s less and less of this older ice each year. The maximum and minimum extents are shrinking, too. Summertime sea ice in the Arctic Ocean now routinely covers about 30-40 percent less area than it did in the late 1970s, when near-continuous satellite observations began. These changes in sea ice conditions enhance the rate of warming in the Arctic, already in progress as more sunlight is absorbed by the ocean and more heat is put into the atmosphere from the ocean, all of which may ultimately affect global weather patterns.

3. Snow Cover on Earth

image

Snow extends the cryosphere from the poles and into more temperate regions.

Snow and ice cover most of Earth’s polar regions throughout the year, but the coverage at lower latitudes depends on the season and elevation. High-elevation landscapes such as the Tibetan Plateau and the Andes and Rocky Mountains maintain some snow cover almost year-round. In the Northern Hemisphere, snow cover is more variable and extensive than in the Southern Hemisphere.

Snow cover the most reflective surface on Earth and works like sea ice to help cool our climate. As it melts with the seasons, it provides drinking water to communities around the planet.

4. Permafrost on Earth

image

Tundra polygons on Alaska's North Slope. As permafrost thaws, this area is likely to be a source of atmospheric carbon before 2100. Credit: NASA/JPL-Caltech/Charles Miller

Permafrost is soil that stays frozen solid for at least two years in a row. It occurs in the Arctic, Antarctic and high in the mountains, even in some tropical latitudes. The Arctic’s frozen layer of soil can extend more than 200 feet below the surface. It acts like cold storage for dead organic matter – plants and animals.

In parts of the Arctic, permafrost is thawing, which makes the ground wobbly and unstable and can also release those organic materials from their icy storage. As the permafrost thaws, tiny microbes in the soil wake back up and begin digesting these newly accessible organic materials, releasing carbon dioxide and methane, two greenhouse gases, into the atmosphere.

Two campaigns, CARVE and ABoVE, study Arctic permafrost and its potential effects on the climate as it thaws.

5. Glaciers on the Move

image

Did you know glaciers are constantly moving? The masses of ice act like slow-motion rivers, flowing under their own weight. Glaciers are formed by falling snow that accumulates over time and the slow, steady creep of flowing ice. About 10 percent of land area on Earth is covered with glacial ice, in Greenland, Antarctica and high in mountain ranges; glaciers store much of the world's freshwater.

Our satellites and airplanes have a bird’s eye view of these glaciers and have watched the ice thin and their flows accelerate, dumping more freshwater ice into the ocean, raising sea level.

6. Pluto’s Icy Heart

image

The nitrogen ice glaciers on Pluto appear to carry an intriguing cargo: numerous, isolated hills that may be fragments of water ice from Pluto's surrounding uplands. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Pluto’s most famous feature – that heart! – is stone cold. First spotted by our New Horizons spacecraft in 2015, the heart’s western lobe, officially named Sputnik Planitia, is a deep basin containing three kinds of ices – frozen nitrogen, methane and carbon monoxide.

Models of Pluto’s temperatures show that, due the dwarf planet’s extreme tilt (119 degrees compared to Earth’s 23 degrees), over the course of its 248-year orbit, the latitudes near 30 degrees north and south are the coldest places – far colder than the poles. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia.

New Horizons also saw strange ice formations resembling giant knife blades. This “bladed terrain” contains structures as tall as skyscrapers and made almost entirely of methane ice, likely formed as erosion wore away their surfaces, leaving dramatic crests and sharp divides. Similar structures can be found in high-altitude snowfields along Earth’s equator, though on a very different scale.

7. Polar Ice on Mars

image

This image, combining data from two instruments aboard our Mars Global Surveyor, depicts an orbital view of the north polar region of Mars. Credit: NASA/JPL-Caltech/MSSS

Mars has bright polar caps of ice easily visible from telescopes on Earth. A seasonal cover of carbon dioxide ice and snow advances and retreats over the poles during the Martian year, much like snow cover on Earth.

image

This animation shows a side-by-side comparison of CO2 ice at the north (left) and south (right) Martian poles over the course of a typical year (two Earth years). This simulation isn't based on photos; instead, the data used to create it came from two infrared instruments capable of studying the poles even when they're in complete darkness. This data were collected by our Mars Reconnaissance Orbiter, and Mars Global Surveyor. Credit: NASA/JPL-Caltech

During summertime in the planet's north, the remaining northern polar cap is all water ice; the southern cap is water ice as well, but remains covered by a relatively thin layer of carbon dioxide ice even in summertime.

Scientists using radar data from our Mars Reconnaissance Orbiter found a record of the most recent Martian ice age in the planet's north polar ice cap. Research indicates a glacial period ended there about 400,000 years ago. Understanding seasonal ice behavior on Mars helps scientists refine models of the Red Planet's past and future climate.

8. Ice Feeds a Ring of Saturn

image

Wispy fingers of bright, icy material reach tens of thousands of kilometers outward from Saturn's moon Enceladus into the E ring, while the moon's active south polar jets continue to fire away. Credit: NASA/JPL/Space Science Institute

Saturn’s rings and many of its moons are composed of mostly water ice – and one of its moons is actually creating a ring. Enceladus, an icy Saturnian moon, is covered in “tiger stripes.” These long cracks at Enceladus’ South Pole are venting its liquid ocean into space and creating a cloud of fine ice particles over the moon's South Pole. Those particles, in turn, form Saturn’s E ring, which spans from about 75,000 miles (120,000 kilometers) to about 260,000 miles (420,000 kilometers) above Saturn's equator. Our Cassini spacecraft discovered this venting process and took high-resolution images of the system.

image

Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL/Space Science Institute

9. Ice Rafts on Europa

image

View of a small region of the thin, disrupted, ice crust in the Conamara region of Jupiter's moon Europa showing the interplay of surface color with ice structures. Credit: NASA/JPL/University of Arizona

The icy surface of Jupiter’s moon Europa is crisscrossed by long fractures. During its flybys of Europa, our Galileo spacecraft observed icy domes and ridges, as well as disrupted terrain including crustal plates that are thought to have broken apart and "rafted" into new positions. An ocean with an estimated depth of 40 to 100 miles (60 to 150 kilometers) is believed to lie below that 10- to 15-mile-thick (15 to 25 km) shell of ice.

The rafts, strange pits and domes suggest that Europa’s surface ice could be slowly turning over due to heat from below. Our Europa Clipper mission, targeted to launch in 2022, will conduct detailed reconnaissance of Europa to see whether the icy moon could harbor conditions suitable for life.

10. Crater Ice on Our Moon

image

The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right), detected by our Moon Mineralogy Mapper instrument. Credit: NASA

In the darkest and coldest parts of our Moon, scientists directly observed definitive evidence of water ice. These ice deposits are patchy and could be ancient. Most of the water ice lies inside the shadows of craters near the poles, where the warmest temperatures never reach above -250 degrees Fahrenheit. Because of the very small tilt of the Moon’s rotation axis, sunlight never reaches these regions.

A team of scientists used data from a our instrument on India’s Chandrayaan-1 spacecraft to identify specific signatures that definitively prove the water ice. The Moon Mineralogy Mapper not only picked up the reflective properties we’d expect from ice, but was able to directly measure the distinctive way its molecules absorb infrared light, so it can differentiate between liquid water or vapor and solid ice.

With enough ice sitting at the surface – within the top few millimeters – water would possibly be accessible as a resource for future expeditions to explore and even stay on the Moon, and potentially easier to access than the water detected beneath the Moon’s surface.

11. Bonus: Icy World Beyond Our Solar System!

image

With an estimated temperature of just 50K, OGLE-2005-BLG-390L b is the chilliest exoplanet yet discovered. Pictured here is an artist's concept. Credit: NASA

OGLE-2005-BLG-390Lb, the icy exoplanet otherwise known as Hoth, orbits a star more than 20,000 light years away and close to the center of our Milky Way galaxy. It’s locked in the deepest of deep freezes, with a surface temperature estimated at minus 364 degrees Fahrenheit (minus 220 Celsius)!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Clay, Clouds and Curiosity

image

Our Curiosity Mars rover recently drilled into the Martian bedrock on Mount Sharp and uncovered the highest amounts of clay minerals ever seen during the mission. The two pieces of rock that the rover targeted are nicknamed "Aberlady" and "Kilmarie" and they appear in a new selfie taken by the rover on May 12, 2019, the 2,405th Martian day, or sol, of the mission.

image

On April 6, 2019, Curiosity drilled the first piece of bedrock called Aberlady, revealing the clay cache. So, what’s so interesting about clay? Clay minerals usually form in water, an ingredient essential to life. All along its 7-year journey, Curiosity has discovered clay minerals in mudstones that formed as river sediment settled within ancient lakes nearly 3.5 billion years ago. As with all water on Mars, the lakes eventually dried up.

image

But Curiosity does more than just look at the ground. Even with all the drilling and analyzing, Curiosity took time on May 7, 2019 and May 12, 2019 to gaze at the clouds drifting over the Martian surface. Observing clouds can help scientists calculate wind speeds on the Red Planet.

For more on Curiosity and our other Mars missions like InSight, visit: https://mars.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

NASA’s View of COVID-19

#COVID19 led to changes in human activities around the globe. We can see some of these changes from space. Some bodies of water have run clearer, emissions of pollutants have temporarily declined, and transportation and shipment of goods have decreased.

image

Along with our partner agencies – ESA and JAXA – we’re making satellite data available on the COVID-19 Earth Observation Dashboard, where you can explore some of the changes we can see from space.

image

But it’s not just what we can see. When the pandemic began, NASA engineers sprang into action to build ventilators, oxygen hoods and more to help save lives.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Black Holes are NICER Than You Think!

We’re learning more every day about black holes thanks to one of the instruments aboard the International Space Station! Our Neutron star Interior Composition Explorer (NICER) instrument is keeping an eye on some of the most mysterious cosmic phenomena.

image

We’re going to talk about some of the amazing new things NICER is showing us about black holes. But first, let’s talk about black holes — how do they work, and where do they come from? There are two important types of black holes we’ll talk about here: stellar and supermassive. Stellar mass black holes are three to dozens of times as massive as our Sun while supermassive black holes can be billions of times as massive!

image

Stellar black holes begin with a bang — literally! They are one of the possible objects left over after a large star dies in a supernova explosion. Scientists think there are as many as a billion stellar mass black holes in our Milky Way galaxy alone!

Supermassive black holes have remained rather mysterious in comparison. Data suggest that supermassive black holes could be created when multiple black holes merge and make a bigger one. Or that these black holes formed during the early stages of galaxy formation, born when massive clouds of gas collapsed billions of years ago. There is very strong evidence that a supermassive black hole lies at the center of all large galaxies, as in our Milky Way.

image

Imagine an object 10 times more massive than the Sun squeezed into a sphere approximately the diameter of New York City — or cramming a billion trillion people into a car! These two examples give a sense of how incredibly compact and dense black holes can be.

Because so much stuff is squished into such a relatively small volume, a black hole’s gravity is strong enough that nothing — not even light — can escape from it. But if light can’t escape a dark fate when it encounters a black hole, how can we “see” black holes?

image

Scientists can’t observe black holes directly, because light can’t escape to bring us information about what’s going on inside them. Instead, they detect the presence of black holes indirectly — by looking for their effects on the cosmic objects around them. We see stars orbiting something massive but invisible to our telescopes, or even disappearing entirely!

When a star approaches a black hole’s event horizon — the point of no return — it’s torn apart. A technical term for this is “spaghettification” — we’re not kidding! Cosmic objects that go through the process of spaghettification become vertically stretched and horizontally compressed into thin, long shapes like noodles.

image

Scientists can also look for accretion disks when searching for black holes. These disks are relatively flat sheets of gas and dust that surround a cosmic object such as a star or black hole. The material in the disk swirls around and around, until it falls into the black hole. And because of the friction created by the constant movement, the material becomes super hot and emits light, including X-rays.  

At last — light! Different wavelengths of light coming from accretion disks are something we can see with our instruments. This reveals important information about black holes, even though we can’t see them directly.

image

So what has NICER helped us learn about black holes? One of the objects this instrument has studied during its time aboard the International Space Station is the ever-so-forgettably-named black hole GRS 1915+105, which lies nearly 36,000 light-years — or 200 million billion miles — away, in the direction of the constellation Aquila.

Scientists have found disk winds — fast streams of gas created by heat or pressure — near this black hole. Disk winds are pretty peculiar, and we still have a lot of questions about them. Where do they come from? And do they change the shape of the accretion disk?

image

It’s been difficult to answer these questions, but NICER is more sensitive than previous missions designed to return similar science data. Plus NICER often looks at GRS 1915+105 so it can see changes over time.

NICER’s observations of GRS 1915+105 have provided astronomers a prime example of disk wind patterns, allowing scientists to construct models that can help us better understand how accretion disks and their outflows around black holes work.

image

NICER has also collected data on a stellar mass black hole with another long name — MAXI J1535-571 (we can call it J1535 for short) — adding to information provided by NuSTAR, Chandra, and MAXI. Even though these are all X-ray detectors, their observations tell us something slightly different about J1535, complementing each other’s data!

This rapidly spinning black hole is part of a binary system, slurping material off its partner, a star. A thin halo of hot gas above the disk illuminates the accretion disk and causes it to glow in X-ray light, which reveals still more information about the shape, temperature, and even the chemical content of the disk. And it turns out that J1535’s disk may be warped!

image

Image courtesy of NRAO/AUI and Artist: John Kagaya (Hoshi No Techou)

This isn’t the first time we have seen evidence for a warped disk, but J1535’s disk can help us learn more about stellar black holes in binary systems, such as how they feed off their companions and how the accretion disks around black holes are structured.

NICER primarily studies neutron stars — it’s in the name! These are lighter-weight relatives of black holes that can be formed when stars explode. But NICER is also changing what we know about many types of X-ray sources. Thanks to NICER’s efforts, we are one step closer to a complete picture of black holes. And hey, that’s pretty nice!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Solar System: Things to Know This Week

We marked the 20th anniversary of Pathfinder's landing on Mars this week. 

We have had an active robotic presence there ever since—in fact, no one under 20 has experienced a day without NASA at Mars—but the Pathfinder mission was the first-ever robotic rover to explore the Red Planet. Below are 10 things to know about this iconic mission as we celebrate two decades of unprecedented science and discovery.

1. A Date to Remember

Pathfinder launched from Cape Canaveral, Florida on Dec. 4, 1996, and landed at Mars' Ares Vallis on July 4, 1997. The landing site, an ancient flood plain in Mars' northern hemisphere, is among the rockiest parts of the planet. Scientists chose it because they believed it was a relatively safe surface to land on and contained a wide variety of rocks deposited during a catastrophic flood.

2. Precious Cargo 

Pathfinder delivered to Mars a tiny, 23-pound (11.5 kilogram) rover named Sojourner, which carried scientific instruments to analyze the Martian atmosphere, climate and geology. To put its small size in perspective, the mechanisms at the end of the Curiosity Rover's robotic arm are heavier than all of Sojourner. You can check out a 360 video of Pathfinder and Sojourner here.

3. Who Named the Rover? 

The name Sojourner was chosen after a year-long, worldwide competition in which students up to 18 years old were invited to write about a historical heroine and how she would translate their accomplishments to the Martian environment. Twelve-year-old Valerie Ambroise of Bridgeport, Connecticut, submitted the winning essay on Sojourner Truth, a Civil War-era abolitionist who made it her mission to "travel up and down the land" advocating for the rights of all people to be free and participate fully in society.

4. Quite the Entrance 

Pathfinder's landing was innovative and unprecedented. It entered the thin Martian atmosphere assisted by parachute to slow its descent and with a giant system of airbags to cushion the impact. This mission marked the first time this airbag technique was used. Spirit and Opportunity later used the same method successfully.

Solar System: Things To Know This Week

5. Mobile Matters 

The wireless modem between Pathfinder and Sojourner was a commercial, off-the-shelf product. The project team acquired several and stress-tested them until they found the best ones to send off to Mars.

6. It's in the Details 

Sojourner had bumpers—actual mechanical fenders—painted with black and white stripes. It also had two forward-facing black-and-white cameras, and one rear-facing camera (all one-third of a Megapixel). And Sojourner's tiny wheels measured just 12.5 centimeters in diameter.

7. Viral-worthy

Pathfinder was widely regarded as one of the first "internet sensations." There was so much web traffic from around the world, the entire internet backbone of France crashed under the load.

8. We're Getting Warmer 

Among the many scientific discoveries from Pathfinder and Sojourner: Rounded pebbles and cobbles at the landing site suggested that Mars might have had running water during a warmer past when liquid water was stable on the planet. Early morning water ice clouds also were seen in the lower atmosphere.

9. Long Live the Mission 

The lander and the rover both outlived their design lives—the lander by nearly three times, and the rover by 12 times.

10. Pathfinder's Photo Album 

Go back in time and see historical photographs of Pathfinder's assembly process here.


Tags
8 years ago

Sounding Rocket Science in the Arctic

We sent three suborbital sounding rockets right into the auroras above Alaska on the evening of March 1 local time from the Poker Flat Research Range north of Fairbanks, Alaska.  

image

Sounding rockets are suborbital rockets that fly up in an arc and immediately come back down, with a total flight time around 20 minutes. 

image

Though these rockets don’t fly fast enough to get into orbit around Earth, they still give us valuable information about the sun, space, and even Earth itself. Sounding rockets’ low-cost access to space is also ideal for testing instruments for future satellite missions.

Sounding rockets fly above most of Earth’s atmosphere, allowing them to see certain types of light – like extreme ultraviolet and X-rays – that don’t make it all the way to the ground because they are absorbed by the atmosphere. These kinds of light give us a unique view of the sun and processes in space.

image

The sun seen in extreme ultraviolet light by the Solar Dynamics Observatory satellite.

Of these three rockets, two were part of the Neutral Jets in Auroral Arcs mission, collecting data on winds influenced by the electric fields related to auroras. Sounding rockets are the perfect vehicle for this type of study, since they can fly directly through auroras – which exist in a region of Earth’s upper atmosphere too high for scientific balloons, but too low for satellites.

image

The third rocket that launched on March 1 was part of the ISINGLASS mission (short for Ionospheric Structuring: In Situ and Ground-based Low Altitude Studies). ISINGLASS included two rockets designed to launch into two different types of auroras in order to collect detailed data on their structure, with the hope of better understanding the processes that create auroras. The initial ISINGLASS rocket launched a few weeks earlier, on Feb. 22, also from the Poker Flat Research Range in Alaska.

image

Auroras are caused when charged particles trapped in Earth’s vast magnetic field are sent raining down into the atmosphere, usually triggered by events on the sun that propagate out into space. 

Team members at the range had to wait until conditions were just right until they could launch – including winds, weather, and science conditions. Since these rockets were studying aurora, that means they had to wait until the sky was lit up with the Northern Lights.

image

Regions near the North and South Pole are best for studying the aurora, because the shape of Earth’s magnetic field naturally funnels aurora-causing particles near the poles. 

But launching sensitive instruments near the Arctic Circle in the winter has its own unique challenges. For example, rockets have to be insulated with foam or blankets every time they’re taken outside – including while on the launch pad – because of the extremely low temperatures.

image

For more information on sounding rockets, visit www.nasa.gov/soundingrockets.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

What are the Universe’s Most Powerful Particle Accelerators?

Every second, every square meter of Earth’s atmosphere is pelted by thousands of high-energy particles traveling at nearly the speed of light. These zippy little assailants are called cosmic rays, and they’ve been puzzling scientists since they were first discovered in the early 1900s. One of the Fermi Gamma-ray Space Telescope’s top priority missions has been to figure out where they come from.

image

“Cosmic ray” is a bit of a misnomer. Makes you think they’re light, right? But they aren’t light at all! They’re particles that mostly come from outside our solar system — which means they're some of the only interstellar matter we can study — although the Sun also produces some. Cosmic rays hit our atmosphere and break down into secondary cosmic rays, most of which disperse quickly in the atmosphere, although a few do make it to Earth’s surface.

Cosmic rays aren't dangerous to those of us who spend our lives within Earth's atmosphere. But if you spend a lot of time in orbit or are thinking about traveling to Mars, you need to plan how to protect yourself from the radiation caused by cosmic rays.

image

Cosmic rays are subatomic particles — smaller particles that make up atoms. Most of them (99%) are nuclei of atoms like hydrogen and helium stripped of their electrons. The other 1% are lone electrons. When cosmic rays run into molecules in our atmosphere, they produce secondary cosmic rays, which include even lighter subatomic particles.

image

Most cosmic rays reach the same amount of energy a small particle accelerator could produce. But some zoom through the cosmos at energies 40 million times higher than particles created by the world’s most powerful man-made accelerator, the Large Hadron Collider. (Lightning is also a pretty good particle accelerator).

image

So where do cosmic rays come from? We should just be able to track them back to their source, right? Not exactly. Any time they run into a strong magnetic field on their way to Earth, they get deflected and bounce around like a game of cosmic pinball. So there’s no straight line to follow back to the source. Most of the cosmic rays from a single source don’t even make it to Earth for us to measure. They shoot off in a different direction while they’re pin balling.

image

Photo courtesy of Argonne National Laboratory

In 1949 Enrico Fermi — an Italian-American physicist, pioneer of high-energy physics and Fermi satellite namesake — suggested that cosmic rays might accelerate to their incredible speeds by ricocheting around inside the magnetic fields of interstellar gas clouds. And in 2013, the Fermi satellite showed that the expanding clouds of dust and gas produced by supernovas are a source of cosmic rays.

image

When a star explodes in a supernova, it produces a shock wave and rapidly expanding debris. Particles trapped by the supernova remnant magnetic field bounce around wildly.

image

Every now and then, they cross the shock wave and their energy ratchets up another notch. Eventually they become energetic enough to break free of the magnetic field and zip across space at nearly the speed of light — some of the fastest-traveling matter in the universe.

image

How can we track them back to supernovas when they don’t travel in a straight line, you ask? Very good question! We use something that does travel in a straight line — gamma rays (actual rays of light this time, on the more energetic end of the electromagnetic spectrum).

When the particles get across the shock wave, they interact with non-cosmic-ray particles in clouds of interstellar gas. Cosmic ray electrons produce gamma rays when they pass close to an atomic nucleus. Cosmic ray protons, on the other hand, produce gamma rays when they run into normal protons and produce another particle called a pion (Just hold on! We’re almost there!) which breaks down into two gamma rays.

image

The proton- and electron-produced gamma rays are slightly different. Fermi data taken over four years showed that most of the gamma rays coming from some supernova remnants have the energy signatures of cosmic ray protons knocking into normal protons. That means supernova remnants really are powerful particle accelerators, creating a lot of the cosmic rays that we see!

There are still other cosmic ray sources on the table — like active galactic nuclei — and Fermi continues to look for them. Learn more about what Fermi’s discovered over the last 10 years and how we’re celebrating its accomplishments.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
3 years ago

We Found the Perfect Spot to Land our Moon Rover

We Found The Perfect Spot To Land Our Moon Rover

After an extensive selection process, we chose the mountainous area west of Nobile Crater at the Moon’s South Pole as the landing site for our first-ever robotic Moon rover. The Volatiles Investigating Polar Exploration Rover, or VIPER, will explore the Moon’s surface and subsurface in search of water and other resources beginning in late 2023. Thanks to past missions, such as satellites orbiting the Moon or impacting its surface, we know there is ice at the Moon’s poles. But how much? And where did it come from? VIPER aims to answer these questions and more by venturing into shadowed craters and visiting other areas of scientific interest over its 100-day mission. The findings will inform future landing sites under the Artemis program and help pave the way toward establishing a long-term human presence on the Moon. Here are five things to know:

The landing site is located just outside the western rim of Nobile Crater at the Moon’s South Pole.

We Found The Perfect Spot To Land Our Moon Rover

The region has suitable lighting and terrain for our solar-powered rover to navigate.

We Found The Perfect Spot To Land Our Moon Rover

VIPER will travel up to 15 miles in search of water and other resources.

We Found The Perfect Spot To Land Our Moon Rover

Its traverse will change depending on what it finds, but it could look like this.

We Found The Perfect Spot To Land Our Moon Rover

Drivers on Earth will tell the rover where to explore during its 100-day mission.

We Found The Perfect Spot To Land Our Moon Rover

The VIPER mission is managed by our Ames Research Center in California's Silicon Valley. The approximately 1,000-pound rover will be delivered to the Moon by a commercial vendor as part of our Commercial Lunar Payload Services initiative, delivering science and technology payloads to and near the Moon.

Make sure to follow us on Tumblr for your regular dose of space.


Tags
6 years ago

Hostile and Closed Environments, Hazards at Close Quarters

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

Hostile And Closed Environments, Hazards At Close Quarters

A spacecraft is not only a home, it’s also a machine. NASA understands that the ecosystem inside a vehicle plays a big role in everyday astronaut life.

Hostile And Closed Environments, Hazards At Close Quarters

Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It’s essential that astronauts are getting the requisite food, sleep and exercise needed to stay healthy and happy. The space environment introduces challenges not faced on Earth.

Hostile And Closed Environments, Hazards At Close Quarters

Technology, as often is the case with out-of-this-world exploration, comes to the rescue! Technology plays a big role in creating a habitable home in a harsh environment and monitoring some of the environmental conditions.

Hostile And Closed Environments, Hazards At Close Quarters

Astronauts are also asked to provide feedback about their living environment, including physical impressions and sensations so that the evolution of spacecraft can continue addressing the needs of humans in space.

Hostile And Closed Environments, Hazards At Close Quarters
Hostile And Closed Environments, Hazards At Close Quarters

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including hostile and closed environments, like the closed environment of the vehicle itself. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of hostile and closed environments with Brian Crucian, NASA immunologist at the Johnson Space Center.

Hostile And Closed Environments, Hazards At Close Quarters

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Applying Earth Observations Data to the Real World

In our DEVELOP Program, participants work on Earth science research projects and are mentored by science advisors from within the agency and from partner agencies, and extend research results to local communities. 

This year, our partners ran the gamut from NASA centers to The National Oceanic and Atmospheric Agency (NOAA) to the University of Georgia to state and local governments. The one thing all have in common: using data from our Earth-observing satellites to inform such topics as disaster relief, preserving watershed and marshlands, working municipalities to provide health and study. The program also helps future scientists develop research and presentation skills.

Annually, the participants gather at NASA Headquarters to present their findings. From more than two dozen, we’re highlighting a cross section whose projects covered climate and invasive species in Alaska; health and air quality in Las Cruces; disaster preparation in the Philippines; and air quality in the Shenandoah Valley.

The projects demonstrate to community leaders how our science measurements and predictions can be used to address local policy issues. This year, DEVELOP features more than two dozen projects covering Earth science topics from all corners of the globe. 

DEVELOP projects apply Earth observations to agriculture, climate, disasters, ecological forecasting, energy, health and air quality, oceans, water resources and weather. These projects highlight NASA Earth observation capabilities relative to environmental issues and concerns for enhanced policy and decision-making to improve life here on Earth.

DEVELOP projects apply Earth observations to agriculture, climate, disasters, ecological forecasting, energy, health and air quality, oceans, water resources and weather. These projects highlight NASA Earth observation capabilities relative to environmental issues and concerns for enhanced policy and decision-making to improve life here on Earth.

Visit the Develop Project page to learn more about the program and how to apply.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • john-erby
    john-erby liked this · 3 years ago
  • 2reputationpegacorns
    2reputationpegacorns liked this · 3 years ago
  • bethelnie-blog
    bethelnie-blog liked this · 5 years ago
  • lucmarcou
    lucmarcou liked this · 5 years ago
  • dc-probate-attorney
    dc-probate-attorney liked this · 6 years ago
  • cutie-hemmings-penguins
    cutie-hemmings-penguins liked this · 6 years ago
  • thisisywedonteatbugs
    thisisywedonteatbugs liked this · 6 years ago
  • savebeerbongweed
    savebeerbongweed liked this · 7 years ago
  • thisisgeorgeryanrossthethird
    thisisgeorgeryanrossthethird liked this · 7 years ago
  • nofmocun-blog
    nofmocun-blog liked this · 7 years ago
  • lxlteo
    lxlteo liked this · 7 years ago
  • desde-mona
    desde-mona liked this · 7 years ago
  • saseas
    saseas liked this · 7 years ago
  • rjpetsupplies-blog
    rjpetsupplies-blog liked this · 7 years ago
  • sorryimstudyin-blog1
    sorryimstudyin-blog1 liked this · 7 years ago
  • analgesicsleep
    analgesicsleep reblogged this · 7 years ago
  • analgesicsleep
    analgesicsleep reblogged this · 7 years ago
  • mymincutie
    mymincutie liked this · 7 years ago
  • lalunette
    lalunette liked this · 7 years ago
  • honeyandsunflower
    honeyandsunflower liked this · 7 years ago
  • daddyslilhorror
    daddyslilhorror liked this · 7 years ago
  • freeandwilddragonfly
    freeandwilddragonfly liked this · 7 years ago
  • spychicken01
    spychicken01 liked this · 7 years ago
  • furiuriosa
    furiuriosa liked this · 7 years ago
  • taebun
    taebun reblogged this · 7 years ago
  • taebun
    taebun liked this · 7 years ago
  • moraine-moraine
    moraine-moraine liked this · 7 years ago
  • rainbow-demon503
    rainbow-demon503 liked this · 7 years ago
  • geminiialex
    geminiialex liked this · 7 years ago
  • raptorwithamarker
    raptorwithamarker liked this · 7 years ago
  • poporano
    poporano liked this · 7 years ago
  • pankaj1995-blog
    pankaj1995-blog liked this · 7 years ago
  • sirenamorena6
    sirenamorena6 reblogged this · 7 years ago
  • sirenamorena6
    sirenamorena6 liked this · 7 years ago
  • sahu
    sahu liked this · 7 years ago
  • kendraisafaggot-blog
    kendraisafaggot-blog liked this · 7 years ago
  • radlyrad
    radlyrad reblogged this · 7 years ago
  • akitolino
    akitolino liked this · 7 years ago
  • mountains-more-like-nothings
    mountains-more-like-nothings liked this · 7 years ago
  • remhache
    remhache liked this · 7 years ago
  • ask-sheban-command-blog
    ask-sheban-command-blog liked this · 7 years ago
  • rajkumarrajkumar-blog
    rajkumarrajkumar-blog liked this · 7 years ago
  • shiny0529-blog
    shiny0529-blog liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags